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On the singularities of 3 — D Protter’s problem
for the wave equation

M.K. Grammatikopoulos, T.D. Hristov, and N.I. Popivanov

ABSTRACT. In this paper we investigate some boundary value problems for the
wave equation, which are three-dimensional analogues of Darboux-problems
(or Cauchy-Goursat problems) on the plane. These problems have been for-
mulated and studied by M. Protter (1954) in a 3 — D domain {lo, bounded
by two characteristic cones and a plane region. Many authors studied these
problems using different methods, like: ‘Wiener-Hopf method, special Legendre
functions, a priori estimates, nonlocal regularization and others. It is shown
that for any n € N there exists a C™({p) - function, for which the correspond-
ing unique generalized solution belongs to C"(p\0), but it has a strong
power-type singularity at the point O. This singularity is isolated only at the
vertex O of the characteristic cone and does not propagate along the cone. In
this paper we investigate the exact behavior of the singular solutions at the
point O. Also, we study more general boundary value problems and find that
there exist infinite number of smooth right-hand side functions for which the
corresponding unique generalized solutions are singular. Finally, some weight
a priori estimates are stated.

1. Imtroduction _

Consider the wave equation
1 1
{13 Ou= Azu—us = E(g'u.g)e + ?”w —uy =17

in polar or Cartesian coordinates £; = gcos @, Tz = psin,t in a simply connected
region 2y C R3. The region

Qo := {(z1,22,) : 0 < t <1/2,8 < /73 +z3 <1-1}
is bounded by the disk
EO — {(a:l,zg,t) o =0,:L‘% +$g < 1}
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and the characteristic surfaces of (1.1):

B := {(z1,z2,8) : 0 <t < 1/2, «,/:1:51 -I—:x:zE =1-t},
o0 = {(z1,Z2,2) : 0 <t <1/2, VT +x3 =t}

In this work we seek sufficient conditions for the existence and uniqueness of a
generalized solution of

Problem P,. Find a solution of the wave equation (1.1) in £, which satisfies
the boundary conditions

(1.2) P.: g, =0, [u+oullz, =0,
where a € C(Zo).

The adjoint problem to P, is
Problem P, Find a solution of the wave equation (1.1) in Qp with the bound-
ary conditions:

.

(1'3) o u!Ez,o =0, [uf + m“uzn =0

The following problems, due to Protter [22], are known as
Protter’s Problems. Find a solution of the wave equation (1.1) in {2 with
the boundary conditions

Pl ‘uigouzl =0, P1*: ul‘u"ouzz,o =0 ;

(14) P2: ulg, =0,u|z, =0, P2 : |z, =0,u|5, =0.

The boundary conditions in problem P1* (respectively of P2*) are the adjoint
boundary conditions to such ones of P1 (respectively P2) for the equation (1.1) in
Q. Protter [22] formulated and investigated problems P1 and P1” in g as multi-
dimensional analogues of the Darboux problem on the plane. It is well known
that the corresponding Darboux problems in R? are well posed, but this is not
true for the Protter’s problems in R®. For recent known results concerning the
problems (1.4) see papers of Popivanov, Schneider [20], [21] and references therein.
For further publications in this area see: [2], [3], [7], [11], [14], [15], [18]. In [1],
using Wiener-Hopf techniques for the case a(p) = c/p,c # 0, Aldashev studied the
Problems P, and P:. For Problem P, which we study in this paper, in [1] he
claimed uniqueness of the solution of the class C*(§20) N C?(€p), but he did not
mention any possible singular solutions.

On the other hand, Bazarbekov [5] gives another analogue of the classical Dar-
boux problem in the same domain Q9. Some different statements of Darboux type
problems can be found in [4], [6], [13], [16] in bounded or unbounded domains
different from .

Next, we present here the following well known (see [24], [19])

THEOREM 1.1. For alln € N,n > 4;an,by, arbitrary constants, the functions
(1.5) va(0, 0,t) = to~ "0 — tz]“'% (@, cos i + by, sin ny)
are classical solutions of the homogeneous problem P1* and the functions
(16) wn(0,0,1) = g "[0° — t*]" 7% (an cosnp + by sin )

are classical solutions of the homogeneous problem P2*.
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This theorem shows that for the classical solvability of the problem Pl (re-
spectively, P2) the function f at least must be orthogonal to all functions (1.5)
(respectively,(1.6)). Using Theorem 1.1, Popivanov, Schneider [21] proved the ex-
istence of some generalized solutions of Problems P1 and P2, which have at least
power-type singularities at the vertex (0,0,0) of the cone X,0. For the homogeneous
Problem P,* (except the case & =0, i.e. except Problem P2*) we do not know so-
lutions analogous to (1.5) and (1.6). Anyway, in the present paper we prove results
(see, Theorems 6.1 and 6.2), which ensure the existence of many singular solutions.
Here we refer also to Khe Kan Cher [15], who gives some nontrivial solutions found
for the homogeneous Problems P1* and P27, but for the Euler-Poisson-Darboux
equation, which are closely connected with the results of Theorem 1.1.

In order to obtain our results, we give the following definition of a solution of
Problem P, with a possible singularity at (0,0,0).

DEFINITION 1.1. A function u = u(x) z2,t) is called a generalized solution of
the problem

E;: Ou = f, ul i 0, [ut +a($)u]|zn = 0,

in Qo, if: -
1) we CH% \ (0,0,0)), [us+ 0’("“"')“”20\{0,0,0) =0, “Izl =0,

2) the identity

{1.7) ] [wgvs — Uy Vg — Ugy Vs — Sf]dT1dT2dE = f a(z)(wv)(z, 0)dx;dzy
Qo o
holds for all v € Vp :=
{ve C ) : [ve + a(a:)u”zo =0, v=0 in a neighbourhood of X¥20}.

In order to deal successfully with the encountered difficulties, as are the singu-
larities on the cone X3 g, we introduce the region

Q=0 n{p—t>eleecl0l),
which in polar coordinates becomes
(1.8) Q. ={(o;0:1):1>0,0<p<2m e+t <p<l—t}

and we define the notion of a generalized solution of Problem P, in Q€ € (0,1) (see
Definition 2.1). Note that, if a generalized solution u belongs to C (2. )NC3(82.),
it is called a classical solution of Problem P, in Q., £ € (0,1), and it satisfies the
wave equation (1.1) in Q.. It should be pointed out that the case e = 0 is totally
different from the case £ # 0.

This paper, besides Introduction, consists of five more sections. In Section 2,
using some appropriate technics, we formulate the 2 — D boundary problems F, ;
and P, 2, corresponding to the 3 — D Problem P,. The aim of Section 3 is to
treat Problem P, . For this reason, we construct and study the integral equation
assigned to the under consideration wave equation of general form. Also we present
results concerning the classical solutions of Problem Fq,2 in Qc,& € (0,1) and give
corresponding a priori estimates. In Section 4 we prove Theorems 4.1 and 4.2
which ensure the existence and uniqueness of a generalized solution of Problem
P, in Qe € [0,1). Using the results of the previous section, in Section 5 we
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study the existence and uniqueness of a generalized solution of 3 — D Problem
P,,. More precisely, Theorem 5.1 ensure the uniqueness of a generalized solution
of problem P, in Q,& € [0,1), while Theorems 5.2 and 5.3 ensure the existence
of a generalized solution, satisfying corresponding a priori estimates for problem
P, in the case, where the right-hand side of the wave equation is a trigonometric
polynomial or trigonometric series. Finally, in Section 6 we present some singular
generalized solutions which are smooth enough away from the point (0,0, 0), while
at the point (0,0, 0) they have power-type singularity of the class p~". Precisely, in
Theorem 6.1 we prove the following result: ’

Let o > 0 and o € C*®. Then for each n € N, n > 4, there ezists a function
Fn(o,0,t) € C™%(), for which the corresponding general solution un of the
problem P, belongs to C™(S0\(0,0,0)) and satisfies the estimate

(1.9) lun(py@,p)| = p | cosng|,  0<p<l

When o = 0 the upper estimate holds, and in this case we have also the following
two-sided estimate

(1.10) p " cosne| < [un(py P, lun(py 0, 0)] < Cop™"| cosmyl,

with Cy = const. That is, in the case of Problem P2 the ezact behavior of un(z1,Z2,1)
around (0,0,0) is (z3 + z3)~™/%.

REMARK 1.1. In Theorem 6.2 we find some different singular solutions for the
same problem P,. It is particularly interesting that for any parameter a(z) = 0,
involved in the boundary condition (1.2) on Lo, there are infinitely many singular
solutions of the wave equation. Note, that all these solutions have strong singu-
larities at the vertez (0,0,0) of the cone Tao. These singularities of generalized
solutions do not propagate in the direction of the bicharacteristics on the character-
istic cone. It is traditionally assumed that the wave equation with Tight-hand side
sufficiently smooth in Qo cannot have a solution with an isolated singular point.
For results concerning the propagation of singularities for second order operators,
see Hérmander [10], Chapter 2{.5. For some related results in the case of plane
Darbouz-Problem, see [17]. --

REMARK 1.2. In 1960 Garabedian proved [8] the unigueness of classical solu-
tion of Problem Pl. Ezistence and uniqueness results for a generalized solution of
Problems P1 and P2 can be found in [20], (21].

REMARK 1.3. Considering Problems Pl and P2, Popivanov, Schneider [19]
announced the ezistence of singular solutions of both wave and degenerate hyperbolic
equation. The proofs of that results are given in [21] and [20] respectively. First a
priori estimaies for singular solutions of Protter’s Problems P1 and P2, CONCETTING
the wave equation in R3, were obtained in [21]. In [2] Aldashev mentions the results
of [19] and, for the case of the wave equation in R™11 he shows that there exist
solutions of Problem Pl (respectively, P2 ) in the domain Q¢, which grow up on
the cones X . like g~ {n+m=2) (respectively, g=(ntm=1)) when for e — 0 the cones
T2 := {p =1 +¢€} appromimate L0 It is obvious that for m = 2 this results can
be compared with the estimate (1.10) of Theorem 6.1 and the analogous estimate of
Theorem 6.2. More comments, concerning Aldashev’s results [2], we give in Section
6. Finally, we point out that in the case of an equation, which involves the wave
operator and nonzero lower terms, Karatoprakliev [12] obtained a priori estimaies
for the smooth solutions of Problem P1 in Qo.
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2. Preliminaries

In this section we consider the wave equation (1.1) in a simply connected region

(2.1) L= {(Q,cp,t):(}<t<(1—5)/2,05cp<21r,5+t<g<1—t},

bounded by the disc o := {(g,,t) : t =0, < 1} and the characteristic surfaces
of (1.1)

T i={(gpt):0<p<2mpo=1-1},
Toe = {(0,0,t) : 0 < p < 2m, 0 =€ +1}.
We seek sufficient conditions for the existence and uniqueness of a generalized so-

lution of the equation (1.1) with f € C(.), which satisfies the following boundary
conditions:

%:2) Fa: “lzmanc = 0, [ +°‘(P)’“]|zonam =0;
(2.3) P ulzm =0, [w+a(p)ulg,nen, =0

where for the sake of simplicity, we set a(z) = a(|z|) = a(p) € C*([0,1]). The
problem PZ is the adjoint problem to Problem Py in Qs

Now, to obtain our results we define the notion of a generalized solution as
follows.

DEFINITION 2.1. A function u = u(g,¢,t) is called a generalized solution of
Problem Py in e, € > 0, if:

1) u € CHQe), ulg, noq, = 07 fu +a(el| g noq, =0

2) the identity

1
(24) f [urv: — ugve — — Ve — fulgdedpdt z__j pa(o)uv dedy
o ToNnaQ,

1.1

holds for all
v E VE = ‘[v = Cl (QE) . [Ut + a(g)v]lzo = O,UIEZG = 0}

The following proposition describes the properties of generalized solutions of
Problem P, in ..

LEMMA 2.1. Each generalized solution of Problem Py in g is also a generalized
solution of the same problem in Q. for € > 0.

In view of (L.7), the equality (2.4) holds for each function v € Vp with the
property v = 0 in Qo \ . To approximate an arbitrary function v; € V; by such
functions in W () we make the following steps:

Step 1. Setting vo(p, @, 1) = et=(@y, (g, ¢, 1), we get

Q”_2|
3t %o

Step 2. The function v2(g,y,t) could be approximated in W2(2) by some
functions, which satisfy (2.5) and are zero in a neighborhood of the circle

(2.5) =0, w|g, =0
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{o =¢&,t =0}. In fact, such functions are:

'U2m(91 o, t) = 'Ug(g, @, t)¢(m V (9 - 5)2 +12), m — oo,

where ¥ € C®(RY), ¥(s) = 0, for s < 1 and ¥(s) =1, for s > 2.
Step 3. Each function vy (@, ¢,t) could be approximated in W}(Q.) by some
functions, which satisfy (2.5), and are zero in a neighborhood of the cone

{e=t+ek
uk(0, @, t) = vom (0, 0, )Y((t — 2+ €)K), K — 0.
In the special, but main case, when
(2.6) flosont) = £D(0,t) cosmip + £ (e,1) sinngp
we ask the generalized solution to be of the form

(2.7) u(p, 0,1) = uld (o,1) cosng +ul) (o, ) sinng

1) (1) — £Q)
. u for f\Y) = f5

If troduce the function u®(p,t) =1 [ ’

we introduce the function u‘%)(p,1) u&f) - f-(1} - _ﬂ(t?)7

then, in view of (1.1), we conclude that
. 2
(28) B = 2 (qu), = o — ol = 1
in Ge = {(g,t) :t>0,e+t < p<1—t}, whichis bounded by the sets:

SO:{(Q:t):t=O1O<9<1}:

(29) S, ={(e,f):o=1—1}, Sne=1{(e):e=t+e}

Instead of the equation (2.8), consider the more general equation
(210) L = 2 (@u), — i) + dlp, u® = 1,
e

with the same boundary conditions. In this case, the two—dimensional problem
corresponding to Py is

L/u(l} e f(l) in Gg,
(2.11) Py '
u(1)151 = 03 [ugl) + a(g)u(n]ISo\(oxo) =40

and its generalized solution is defined by

DEFINITION 2.2. A function u®) = u{V (g, t) is called a generalized solution of
problem P, in Ge, € > 0, if:

1) uwe CHGe), lue + (@)l 5006, = O Usinoe. =0

2) the identity

(2.12) / [, — uPw, +d(e, £yuMy — fVo]pdodt = f oa(o)uDv do
Ge 50N9G,
holds for all

ve V) = {v € C1(Ge) : [vs +alp)l|g, = O], = O}
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By introducing a new function
(2.13) u® (g, ) = o*uM(e,1),

we transform (2.10) to the equation

2) _ . (2) Li.@_ 1

(2.14) u) —uy’ + [d(Qat) + 4—95] u® = gy,

with the string operator in the main part. Substituting the new coordinates
(2.15) E=1-p—-t,n=1—p+1, '

from (2.14) we derive

1 1
(216) gt [dPEn) +@-n-97|U= 5@ -1-0 &),
in D, = {(£,n) : 0 <& <71 <1—¢}, where

217 UEm =u@(pEn),tEn),  F&mn) =D& n),t&n).
Thus, we reduced the problem P, ; to the Darboux-Goursat problem for the more
general equation (2.10) with the same boundary conditions:
Py { Usn + c(&,mU = g(§,7) in De,

: U(0,n) =0, (Uy — Ug)(&,€) + (1 - )U(,€) = 0.
In view of the above observations, the wave equation (1.1) transforms finally to the
equation

(2.18)

1—4n?
42—-¢-n)?
which is of the form (2.16).

T — 1 e B3
(2.19) Uen + U= 4\/5(2 n—&)3F(,n),

3. The integral equation corresponding to Problem F, 2
Set

1 —4n? _. -
ele, 1) =~z € (Do \ (1,1)),
(51) o 0
g(&n) = 475(2 —e—n)iF(En).

Then the equation (2.19), in new therms, takes the form of the equation in (2.18).
Remark, that if f,(f) € C%Gop), i =1,2, theng € C(Dy), while ,:) € C*(Go),
i=1,2, then g € C*(Do\(1,1)).

In order to investigate the smoothness and the singularity of a solution of the
original 3 — D problem P, on g, we are seeking for a classical solution of the
corresponding 2 — D problem P, 2 not only in the domain D,, but also in the
domain

(3.2) DW= {(&,7m):0<E<n<1,0<f{<l—¢}, >0

Clearly, D. < D&.
Consider now the equation from (2.18), ie.

(3.3) Ue, + c(&;mU = g(&,m) in DY,
where c(£, 1) € C(D), g(¢,m) € C(DE), e > 0.
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Next, for any (£5,70) € Dil), we consider the sets

Hﬁ:ﬂfaﬂ)=U<§<50afu<ﬂ<ﬂo}= T=={(§,ﬂ)=0<§<ﬂa0<ﬂ<§o}

and we construct an equivalent integral equation to the problem Fa2, in such a
way that any solution of the problem Fpy,2 to be also a solution of the constructed
integral equation. For this reason, we consider the following integrals:

fo= [[ tote,m —elemUtE Ml nde = / N je Uen(€,17) dm €

€o
= L [Ue (€, 70) — Ue (€, E0)] d€ = U(Eqs mo) — U6 o)

and

n= [ lale,m) = e U ) nd = [o ’ ]E * Uenl€, m) dn e

£o €o
= L (e (€, &) — Ve (€, )] dE = U(Eor o) — [0 UL (€, ) de.
On the other side,

= ’ [ Vel dn = / * Uy dn.

Hence, we see that:

éo
of; = Ul(€e, £0) + jﬂ (U (£,€) — Ue(&, &) dé

£o
— Ulto, o) — fo ol — E)U(£,€) d&,

£o
[

Io + 2, = Ul€o, o) — fo (1 - O)U(E, £) de.

From the latest relation we obtain
fo 7o
U(€oy0) = f j [9(&,m) — cl€, W)U (& n)] dnd€
0 &o
Eo
(34) +2 / / "lg(&,m) — cl&. MU (€M) dE dn
0 0

Eo _
+ fo (1 — E)U(E, £) d€, for (€9,m0) € DY,

which is the desired integral equation.
Next, we set

(3.5) M, == suplg(£,m)|, cle) = suple(§,m), Mo :=sup|a(§)]
D pw [0,3]

and state the following
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THEOREM 3.1. Let c(§,n) € C’(DQ)), g(&,n) € G(Dgl)), € > 0. Then there
ezists a classical solution U(€,n) € C* (DM of the equation (3.3) which satisfies
the boundary conditions (2.18) with Ug,(§,7) € C(ﬁg)) and

U (€0sm0)| < EoMlc(e) + Ma] " exple(e) + Ma] in D,

(3.6) 1
Z‘%E{!UEL |Un|} & MgIC(E) + M)t explef(e) + 2M,).

Proof. In order to solve the integral equation (3.4), we use the following se-
quence of successive approximations U (») | defined by the formula

&o o
U+ (gg,mp) = fo f; lg(€,7) — (&, mU™ (&,m)] dn d&

o 7
(3.7) +2 [0 fo l9(£,7) — (&)U (&, m)] dE dn

&o
4 f ol - UM, €) d,
Q
U(O)(fo, 7?0) =0, in Di-

We will show that for any (§,7p) € D and n € N it holds

Myle(e) + Ma]"€5™
(n+1)! ’

(3.8) |(TO+D — U™) (&g, m0)] <

Indeed:

o Mo o [N
1) UD€ o) = ]0 f‘E ol€,n) dndt +2 fo jo g€, m) dé dn,

and hence

D (€5, m0)| < MylEo(m0 — &o) + €3] = Moo < Mo

2) Let, by the induction hypothesis (3.8),

U — U)o, 10)] < Llele) + Mal™ 65 i= An}

be satisfied. Then, it follows that
€0 7o
(@D —T™) (€0, m0)| = }_ fo /.5 o(&mU™ = UCV)(g,n) ddg

fo i £0
o (n) _gr(n-1) o (n) _gr(in—1)
2 [o fo (&, m) (U™ —UD)(€, m) dE dn+ fo (1-&) (U™ - )(5,£)d<s~

SAn[C(E)(/OED jﬁ E"dnd£+2f:n /:E“d&dn> +Maf“§"de]

B 1 . B _—-_2____ n+2 _& n+1
_An[c(s)(n+1fo+ (0 50)+(n+1)(n+2) 0 )+n+l 4 }
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- 1 o1, M ems2 Mo n+1]
__A”[C(E)(n+1€0 lo (n+l)(n+2)° )+n+1§°

e(&) i1, Mo pnt1 g nentl |
<A |88 gnt1 Ma - + M, — ,

So, the inequality (3.8) is proved and hence the uniform convergence of the sequence
{U™ (&, ) }men in D&Y is obvious. For the limit function U € C(l_)gl)) we obtain
the integral equality (3.4) and U(0,7,) = 0.

Also, in view of (3.8), we see that

n

S (@D - v®) (&, m0)

k=0

< & Myle(e) + M,) ! exple(e) + Ma),

(U (&, m0)| = k+1)!

n k
<o,y LML g4
k=0

and therefore
U (€0, m0)| < EoMylele) + M)~ exple(e) + Mal.
To estimate the first derivatives of the function U, by (3.7), we get:

(3.9) U (€0,m0) = (1 = £0)U™ (0:40)

50 o
+ /0 [9(¢, &) — c(&, &) U™ (£, &) dE + fE [9(€0,m) — (&0, U™ (&0, )] dn,
and

£o
(3.10) Uit (€, m0) = /0 [9(&,m0) — (€, 10)U™ (€,10)] &
Using (3.8) and (3.9) we see that

ED o
|UE(?(§0:TI0)§ = ‘./0 g(&,&y) d€ + ng ‘.‘_J(fo,”'?) dﬂ’

< My(&o+m0— &) = Mgy < My,

and

€0
O — U)o, mo) = l— /; e(&, &) (U™ — U™ (€, &o)] dE

- / " c(o, M)(U™ = UMDY (&, ) dnp+ a(1 — &) (U™ — TUTD)(€q, &)

€o

50 Ul
< %[C(E) + M, ? [C(E)(fo £ de + Lo £5 dmn) +Ma€3]

< Lotete) + Mol [0
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So, for the derivative U, (£o, 7o) We get the estimation:

(311) e, (é0sm0)l = lim U (€, m0)l = IZ(U“’“) U) (€0sm0)
k=0

< Mgkzzf:] [e(e) +]:!Mfa]k-1 [kcif:‘)l +Ma] < Mgle(e) + Ma]™ exp[c.(e) +2M,].

Using (3.8) and (3.10), we find
(UL — U (€oym0)| = |- f e(€,m0) (U™ = UD€, mo)] €]

< EWMa o) + ap? f £ dE < iy TElee) + Mg

Therefore, U € C* (DE}) and
(3.12) |Uno (€0, 70) < Eole(e) + Ma] " exple(e) + Mal.
Also, by (3.10), it follows that
f,:,‘;f,” (€0s70) = 9(£0>0) — (60, M0)U" ) (€0 70)-

Thus, the function U(&g, 7o) is a solution of (3.3) and Ugy € C(DY). Finally, using
(3.9) and (3.10), we see that

Yish [U(ﬂ+1) UE(:H) +o(l - EU)U(nH)](fm 7o)

n—oo

= o1~ &) lim (U = U™)(0,€0)] =0,

i.e. U(&g, o) satisfies boundary conditions (2.18). m

The next result is very important for the investigation of the singularity of a
generalized solution of problem Fo.

LEMMA 3.1. Let (¢, ), g(€,n) € C(DE) and
(3.13) gem) =0, c&n) <0 nDM;a()20 for0<{<L

Then for the solution U(£,n) of the problem (3.3), (2.18) (already found in Theorem
3.1) we have

(3.14) U, =0, Un&mn) 20, Usg(m) 20 inDP.
Proof. In view of (3.7), from (3.13) we have

€ [T I
U (€, m0) = ]0 fs o(€, ) dnd€ +2 [) [) o(€,n) d€ dn 2 0.
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Suppose that (U™ — U (n=1))(£p, 7mq) = O for some n € N. Then

€0 [T

U+ — UM)(£g,mp) = — fo ff c(€,n)(U™ — UD€, n) dnd§
& M

) A —[0 c(¢,m)(U™ —UT=1)(&,n) d§ dn

£o .
. / a1 — £) U™ — UPD)(,€) dE 2 0
0

and

(3.15) U(&o,m0) = Z(U("+1) — U™)(é0,m0) = 0.
n=0

Since U(&g, 7o) = 0 for any (£g,70) € D and

(3.16) Uso(fm ng) = o1 — &)U (%o £o)

fo To
+ [ 006 60) = o6 E)UTE )] f£ [9(€0m) — cl€os MU (o, m)] d,
o
(3.17) Uny(€or0) = [l m0) = &)U €700 6

we conclude that Ug, 2 0and Uy, 201n D,{;l). |
As an immediate consequence of Theorem 3.1, (3.16) and (3.17), we have the
following

TrporEM 3.2. Let o(&,n) € CH(D), g(&,m) € CH(DEY), @ & CX((0,1]),
where k > 1, > 0. Then there exists a classical solution U € C*+1(D)) of the
problem Py -

4. Existence and uniqueness theorems for 2 — D Problem P

Consider the problem

{ Lu® = L(puf?) - o +d(p, t)u® = fO in G,

4.1 Py I
() . u(l)lsl =0, [ugl) + a(p)u(l)nso =0.

2

Note that, the notion of the generalized solution of the problem P, i in the
domain G, , € € (0,1), has been defined by Definition 2.2.

TueOREM 4.1. If d(p,1), fM(0:t) € CY(Go \ (0,0)), then there ezists a gen-
eralized solution u) € C2(Go \ (0,0)) of problem Pa,1 in Go, which is a classical
solution of the problem Py, in any domain G, € € (0,1).

Proof. In view of (2.13) and (2.15), ie. u®(g,7) = 02 (p,t) and £ =
1— p—t,n=1—p+t, consider the function

Uemn)=? (e(&m)tE:m))-
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Then Problem P, ; (see (4.1)) becomes P, i.e.
1

(42)  Ug+g [d@Em+@-¢-n7|U= B @OV FE ),

For each ¢ € (0,1) Theorem 3.2 ensures the existence of a classical solution U(§, ) €
C2(D®) of the problem P,j. The inverse transformations lead to a function
u@(p,t) € C2(Go\ (0,0)), which is a classical solution of Problem P in G.. This
solution is also a generalized solution of the same problem in Gp, because each one
of test functions v € Vj is zero in Go\G. for some £ > 0 and, for the concrete v,
(1.8) coincides with (2.4).

The proof of the theorem is complete. =

THEOREM 4.2. For each fized € € (0,1) there exists at most one generalized
solution of the problem P, in G..

Proof. If u; and ug are two generalized solutions of Py 1, then for u() =y —usy
we see that
u® € CY(Ge), uV|g 6 =0, [P +a(r)uP]|g 5 =0
and the identity

(4.4) f uMv, — uv, + d(p, t)uVv] ededt — f pa(o)uMvdp =0
G. SpndG,

holds for all functions_'v = Ve(l) :
Let h(p,t) € C*(Go \ (0,0)). Set

s 9(&m) = 755 [2 — £ — /(2 — € — n)/2. (n - €)/2) € CH(DLY),
4.5

of€,m) = 1 [d(o(€, m), 1€, m) + 2 —n — )% e CHDLY),
and consider the boundary value problem o

(46) ‘/E'q + C(ET W)V = g(fa 77) in De,

(4.7) V|1 =0, Vo= Ve+o(l- V]|, —e =0

By using the substitutions §; =1 —e—1n, 7, =1 — € — ¢, and by setting
(4.8) V(l)(fb"h) =V(l-e—m,l-e-&),

the problem (4.6), (4.7) becomes

(49) 1ff(llf?'l 63 c(l) (61! 771)V(1} = 9(1) (511 Th) in DE:

(4.10) VO, =0, [P -V +ele+&)VI, _ =0
where

D (gy,m) = 7 [dP(E0m) + (6 +m +29)72] € CH(DL).

But (4.9), (4.10) is the Goursat-Darboux problem Py 2 in the domain D., for
which Theorem 3.2 holds. Consequently, there exists a classical solution V() (¢€,,7,) €
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C? of (4.9), (4.10). The inverse transformation leads to a classical solution V' =
V(&,n) of (4.6), (4.7) in D.. Similar arguments show that v(p,t) =
0~ 12V (£(0,1),m(p,t)) is a classical solution of the problem

(4.11) v = lg(gu,_,)g — vy +dv=h(g,t) in G,

(4.12) Ulsz,‘ = 0, [ws + cx(.t_a)'v]“‘_.,.o =0,

for fixed € € (0,1). ~
Multiplying (4.11) by a generalized solution u(*) € C*(G¢) and integrating by
parts, we find

(4.13) f [weu” — veug) + dvu® — huM]odedt — / oo(o)vu® do = 0.
Ge SoNBG:

Comparing (4.13) and (4.4), we see that

(4.14) [ h(o, t)u® (o,) pdgdt = 0.

€

But the function h(p,t) € C*(Go \ (0,0)) has been arbitrarily chosen. Thus (4.14)
gives u)(p,t) = 0 in G.. The proof is complete. B
5. Existence and uniqueness theorems for 3— D Problem F,

In this section we consider for the wave equation
(5.1) Clu = -1;(91&9)_,_, + Elguw —un = f(o.0,1),
subject to the following boundary value problem
(5.2) P,: Du=finQ., u|21nan, =0, ['LLE_-I-cx(g)u]‘Eaﬁaﬂe =
and prove the following results.

THEOREM 5.1. For 0 < ¢ < 1 there ezists at most one generalized solution of
Problem P, in Q..

Proof. Case 0 < e < 1. If uy,uz are two generalized solutions of Py in Q.
then for u® 1= u; — us € C*(£2) we know that

a 1 =0;
u(l) ISIr'Ian = 07 [ut ) + a(g)u( }]IZUHaﬂg - 0,

and the identity
1
(5.3) f [ugl)'vt - ugl)vp - ;Eug,l}vq,] pdpdydt = f po(pyuVv dpdep
Qe ZpNoL2,
holds for all v € V.. We will show that the Fourier expansion
- .
(5.4) uD(p,pt) = {uﬁl) (p, t) cosmep + ul® (p, 1) sin mp}
n=0

has zero Fourier—coefficients u% D(p,t) n Qe, i€ ) =0 in Q..
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Since u®) € C*(£2,), using
v1(p, ;1) = w(p,t) cosnp € Ve or va(p,¢,t) =w(p,t)sinny € Ve

in (5.3), we derive

; . 2 ; ;
(5.5) us;)wt —ullgy, — Ty pdpdt — pa(p)ulwdp =0
s e P P2 n n

< 8G.NSa

for all w € Ve(l),'n € N,i = 1,2. From Definition 2.2 it follows that the functions
ud (o,t) are generalized solutions of the homogeneous problem P, ; with d(p,t) =
n?p~2 € C*(Go\(0,0)). Clearly Theorem 4.2 gives u5” (¢,) =0 in Q. for n € N,
i=1,2 and thus ™) = u; —uy =0 in Q.

Case & = 0. In this case from Lemma 2.1 it follows that the generalized solution
u® e ¢ \ (0,0,0)) of Problem P, in § is also a generalized solution of the
homogeneous problem P, in (2, for each € € (0, 1). From Case 1 we know that
2 =0in Q. for each £ > 0 and thus u) = u; —u2 =0 in Qo. ]

THEOREM 5.2. Let the function f € C(f—lo) Fret (S—ig\(U,O, 0)) be of the form:

k
(5.6) f(l)(g, @,t) = Z {ff(tll)(g’ t) cosnep + f,(,m)(g, 1) sinmp} :

n=0

Then there ezists one and only one generalized solution

k
(5.7) uB(g,p,t) = {u&“)(e, t) cosn +ul? (g,1) sin mp}

n=0

of the problem P, in o, u® € C?(Q\ (0,.,0)) and it is a classical solution of the
problem P, in each domain Q., € (0,1). Moreover, for a fized n the corresponding
trigonometric polynomial u,, of degree n satisfies a priori estimates: for n=0:

(5.) uo(z1, z2,)llcra,y = Z|ai51 Sgplﬂ"uﬂ-
< 8exp(2Ma)e? exp(1/45%) 115 ooy
forn € N:
Hun(zle?at)Hcl(ﬁ,)
(5.9) 1/2 2
& n
< 8exp(2M,) —— exp ('E_g) (Hfﬁn) les (@) + 1782 “Co(én)) .
where Q. = QN {(p,t) : 0+t >}

Proof. It is enough to consider the case of a fixed number n. Let

(11) : F(p,8) = f(n)( )
5.10 v (p,t) =1 *» (o,%) in case o, 5 ()

Then by (5.7) and (5.10), the equation (5.1) becomes

1 n?
(5.11) S, ~ U = U = FO(e)
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As in Section 2, we make the substitutions

(5.12)

E=1-p-t,n=1—p+i,

and introduce the new function

(5.13)

U (g, n) = /2UM (o(€, ), tE, M)-

Then (5.11) reduces to (2.18), where

c(&n) = pTp ST

L4’ ¢ oD\ (1,1)),

B gen) = 5= -0 APE € CDNLD)

3 (e,m) = £ (e(€,m), (&, M),

and satisfies the Goursat-Darboux problem Py 2. Theorems 3.1 and 3.2 ensure the
existence of a classical solution U = U (¢, ) of this problem with the properties

(3.6).

Case n € N. In view of (3.5), (5.14), it is easy to see that

c(e)

M,

(5.15)

n2
S“P‘C(gzﬂ)l S 3
Dgn £

1 . 1 :
g ey/2502) < Lysaay on
‘SD‘ER|4\/§( n E) fn (E?’?)i =a ”fn ||C°(Gg)

where DSV = {(&,M0<E<n<l, 0<&<1—e}, €>0. Hence Theorems 3.1
and 3.2, on one hand, ensure the smoothness of the solution U® of Problem P, 2,

ie.

(5.16)

U’E?i) (E; n) = U(2) e Cz(Dgl))'}

on the other hand, they ensure the a priori estimates:

17 D¢

By

7 1 i 52 n
oD@ < S lonon e e (T

2
oE
2

2
2 i 1 i € n
sup{|U52 1, WS < 71557 lee @)z Xp(2Ma) exp (—2) ;

Also, by (5.12) and (5.13), we have

U (p,8) = o~ 2UL) (&, m) -

Since p > &/2 for (€,7) € DY by the inverse transformation:

; £3/2 2 )
0l < ert) S e () 18 lon
i il n :
618 el < eneM) e () 1o

1059 (o, )|

IA

c1/2 . b
2exp(2Ma) S o2 (55 ) 1Al -
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Therefore, in view of (5.7) and (5.18), we derive

“g“ ,?p(é‘: ©, );Ico(f},)
(5.19) £1/2

/
< exp(2M,, )—GXP( ) (”f(n)”cc(c;o) + |78 )”CG(GU))

Since un(gcose, psing,t) = u$) (o, ¢, ), obviously

el/2 .
e 2,01 < 30xp(200a) S o0 (T ) (I8P omc@or + 1582 horiem)

i=1,2. So, the estimate (5.9) holds in ..

Case n = 0. In this case, by (5.6) and (5.7), it follows that 0, 0,1) =
759 (0,1) and uo(w1,3s,t) = ud (e,¢:%) = ui (0,1). Problem Po,p in this case
becomes

U2 +ce, MU = gl&,m) , UPlemo =0, UP|p=e =0,
where

ofg,m) =22 -n—8]7" € C¥(Do\ {1,1})

and
(11)
C(S) = Sup ‘c(‘fa ﬂ)l = =— 4.62 ) MQ = 4”f0 ]|C°(Gg)
Arguments similar to the previous case lead to (5.8).0

The following theorem is an immediate consequence of Theorems 5.1 and 5.2

THEOREM 5.3. Let the function f € C*(S) be of-the form
(=]
(5.20) flovoit) = 3 {8 (p, ) cosmep + £ (p, 2) sinng}.
n=0

Suppose that the Fourier coefficients f(l) (p,t) and f,(,g) (p,t) satisfy
1 11
s 0= o0 (25 ) Sl

(5.21)
+Z eXP( ) (”f(n)”ca(ca) + 178 )lice(so)) <o00.

Then there erist one and only one generalized solution u € CY.) of the problem
P, in Q. and the a priori estimate

(5.22) lullorcg,) < 8exp(2Ma)| fllexs (o)

holds. If the series (5.20) is finite, then u € C%(€0 \ (0,0,0)) and it is a classical
solution of the problem Py, in Q€ € (0,1)
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REMARK 5.1. Condition (5.21) is valid for each € € (0,1) if there ezists a
function 1 with ¥(n) — oo as n — oo, such that

o

1
(523) 3 epn®p(m) (1A oo + I looen) < oo

n=1

REMARK 5.2. As we see, the norm (5.21) on the right-hand side of (5.22) tends
to infinity as € — 0. At this point, it is reasonable to remained that, according to
Theorem 6.1 (see, the discussion in Introduction) the estimate (5.22) is satisfied also
by the generalized solutions which have singularities at the point (0, 0,0). Therefore,
the left-hand side of (5.22) tends to infinity as p — 0. The above phenomenon is
subject to the new paper [9].

6. On the singularity of solutions of Problem F,
For the wave equation
1

T
we consider again the boundary value problem F,, i.e.

62) Py: Ou=fimQ, ulg =0 [u+a(ully =0.

and begin with the following interesting result of this section

(6.1) Che (Que)g =+ Elz'ucptp — Ut = f(gz 2 t)

THEOREM 6.1. Let afp) > 0, ¢ € [0,1}; a(e) € C([0,1]). Then for eachn €
N, n > 4, there erists a function f,(0,¢.t) € C’“‘2(90)_, for which the corresponding
general solution u, of the problem Py belongs to C™(20\(0,0,0)) and the estimate
1 = —n
(8.3) [un(pr,0)| 2 5lun(20,90,0)| + *lcosnp| 2 p"|cosne],  0<p<l,

holds. In the case a(p) =0 the upper estimate
—

2
6.4 Un )| <e¢ _1/2(————’—)—-—-—) cosngl, (o, t) € DY
(64)  [un(e0t)| < cup Gioe=D) | ¢l (e,2) € Dy
holds, where ¢, = const and
DY i={(p,t):0<p—t<p+t<plp—t)},p<25t -1

Thus, for a(g) = 0 we have two-sided estimates, which in special cases t = p and
t =0 are:

65)  p"|cosng| < [un(py o, 0),  |un(p,,0)| < Cop™"|cosmepl,

with Cy = const. That is, in the case of Problem P2 the ezact behavior of Un(T1,Z2,1)
around (0,0,0) is (z3 +z3)~"/2.

Proof. Note that, by Theorem 1.1, the functions
wn(o,0,t) = 0" (0® — 12)"Y2(a,, cosnep + bp sinng),n > 4,

are classical solutions of Problem P with a = 0,.where obviously w, € C™2(Qp).-
We consider the special case of Problem F, :

(6.6) Ou=p"(e* —t*>)" 2 cosnp  in Qo,

(6.7) u‘zl =1, [ue + ac(g)u]‘):c| =0.
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The Theorem 5.1 declares that the problem (6.6), (6.7) has at most one generalized
solution. On the other hand, from Theorem 5.2 we know that for this right-hand
side there exists a generalized solution in {2 of the form

un(p, p,t) = u;l) (0,t)cosmyp € Cﬂ-l(ﬁo\(os 0,0)),

which is classical solution in ., € € (0,1). By setting ule )(g, t) = g’i"ug,l)(g, t) and
substituting

(6.8) E=1—p—t, n=1l-p+%

the problem (6.6), (6.7), in view of

(6.9) Un(&:m) = w2 (28 m), ¢, m)),

becomes a Goursat—Darboux problem P, :

(6.10) Un,gn + (& mMUn = g(&,7),

(6.11) Ua(0,) =0,  [Uny—Ung+o(l=EUn]| _ =0

The coefficients
2

(6.12) () = g—g g € OO, n24,
619 sl =21 [LZ0ZD e o)

are defined by (3.1). It is obvious that in this case c(¢,n) < 0, g(£,7) > 0 in DV,
e € (0,1).

Thus, for a(£) > 0, in view of Theorem 3.1 and Lemma 3.1,we have the following
result.

Proposition 6.1. There ezists a classical solution U(€,7) € C™(Do \ (1,1))
for the problem (6.10), (6.11) for which

UEn) 20, Um0, Uyén)=0in DY
Let

(6.14) K=me@mma>u
3

From (6.10) for 0 < € < 1/2 it follows that

eiis fD o 9 (6 dndt = fD gy Uend(&,m) dn g
(6.15)
+f c(&,mU(E,ng(&,n)dndé = I + I,
D&y

where
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l—e 1
I =fﬂ [E (UEng)(E:ﬂ)dﬂd{

l=g
= [ el ot - Uele Ol ) - [ @& and
0 D:

By (6.13), it is obvious that g(£,1) =0- So,

(6.16)

Since

(6.17)

l—e
n=- [ U6 00e &~ [, Weon))dncs

fD QI)(UEQH)(E:"T)dEdﬂ——- fo - jo H(Ugg,,)(g,n)d{dn
1 1—e 1—e

+j;_ fﬂ (Usgn)(ém)dédn=/o (Ugn)(m,m) — (Ugy)(0,m)] dn
1

+ fl_ [(Ugn)(1 — &,m) — (Ugn) (0, m)] dn = ” Ugen(€,m) d€ dn

l—e 1
- [ womnan+ [ @ma-endn
0 l-¢

_/(L)(UQEW)(gsﬂ)dﬁdﬂa
De

(6.16) becomes

(6.18)

; P [D (6, ©)9(6,6) + U6, g0 (€. )] d

1
- [ v e -gnant [ ) dedn

An elementary calculation shows that

(6.19)

(6.20)

and

(6.21)

aelem =—(n— 22 [%‘%—1_—;1)] 2] <o

antem) = ~(n - Pt [ETE=

6e(6,6) = 9a(6,6) = (1 - 2m)(1 - E.
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From (6.18) and (6.15) it follows that

1—¢
0 <K £ Ity = /D Ue (6, €)9(6,€) + U (€, €)ax (€, 6)] d€

(6.22) 1

~[1_ Ul —&,m)gq(l —&m)dn+ D(I)U[gfn + cgl(&,m) d¢ dn.

Also, it is easy to check that

gen(&,m) + (€, mg(§,m) = 0.

Thus,

1—€
0<K<h+Ih=— f [Ue(&, £)9(6,€) + U (€, €6 (6, €)] de
(6.23) .

1

= f U(1 —&,m)gn(1 — &,n) dn,
1-—-¢

where, as it is easy to check,

(624 0:(6,8) = 3196 E)e-

The function U(£,7) is a classical solution of (6.10), (6.11) in D, € € (0,1) with

(6.25) Ue(6,6) = 2106 e + 50(1 - HUES)

If we substitute (6.24) and (6.25) into (6.23), we get

1 1—¢
K<h+h=-3 [ bEaUEkds

1 l1—e 1
3 [et-oueoseos- [ va-snmi-and
(6.26)

e (T lfl_sa(l-av(s £)g(€,€) de

- 2 g &, E) '2_ 2 1S )9S,

= U(l—e,m)gqy(1 —e,m)dn.

1-¢

According to Proposition 6.1 and the choice of right-hand side of (6.8), we have

U(E, 1) = 0,Un(€,7) = 0,a(£) > 0,(£,m) = 0,95(¢,m) < 0in DY,
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which together with (6.26) implies
1

K<h+IL<- U(1 —&,m)gn(1 —€,m)dn— %(gU)(l——s,l —e)

1-¢

1
= [ va-emig-enld-3@0-g1-9)

1—e

1
1
< Ul —e,1)|gy(1 —&,m)ldn— E(gU)(l —&l—¢)

- 1—e

= [U(l—s,l)—-;-U(l-e,l-—s)] gl—g1-¢),
because g(1 —¢,1) = 0. Since g(1 —¢,1—¢) = %E“‘“%, we see that

1
0<K< [U(l—a,l)—%U(l-—e,l—s)] Zs”"é.

For § =1—¢,n=1we have p =t =¢/2 and so
€ €

(6.27) 0 < 4Ker ™ < ul® (5 §) - %ug)(s, 0).

Finally, the inverse transformation gives

1 = x 1
ull (%, %) > 52&5‘1) (,0)+Cie" 2 Cie™™, 0<e< 3

with & = 2% K. Multiplying the function u, by C?, we see that (6.3) holds.

In order to obtain an upper estimate of the singular solution, we consider the
case afp) = 0. In this case (6.26) gives

2 1 !
L= [ denddn=—3000-e1-9) - [ Usmi-andn
Put

Ki= [, @Em din>0
DD

Then for 0 < § < & < 1 we have
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K. >L+1D

=—%(gU)(1—E,1-—E)+ ll_EU(l—e,n)]gn(l—s,n)ldn
%(gU)(l—s,1—£)+ I;U(l—E,I-E)Ign(lﬁs,n)wn
(6.28) > —%(gU)(l—a,l-sH l;U(l—E,l—é)lgn(l—'s,n)Idn

_>__

S5 —%(gU)(l e l—e)+ (V)1 —e1—8)

1
>U(l-g,1-9) [g(l—~s,1—6)— Eg(l——s,l—s)]
> A(gvv)(]' —& 1= 6)!
where the constant A > 0 is such that
(6.29) (1-Ng(l—51-8)>2g(1—¢1—¢)

Using the explicit formula (6.16) for the function g(§,7), we see that the last in-
equality is equivalent to

(6.30) (1-2) ( 4 )n*% > o—ntd
e+é - ’
which implies
a1
(6.31) 0<)\§1—%(£;§6) °
A necessary condition, for (6.31) to be satisfied is
(6.32) 1< % <o:h -1

Using (6.32), we can find an upper estimate for the generalized solution u, in this
concrete case. To do that we consider the domain

(6.33) D*={(tn):l-n<1-£Zul-n}
where 1 < p < 93751 — 1. Observe that

1 .
. 1f1-é+1-9\""% 1/14+p\""2

el e S o b T — ]
‘55{1 2( 21—-7) ) } 2( 2 Chape 0

For A = C,,, the inequalities (6.30) and (6.29) are satisfied and so, by (6.28), we see
that

2-§-1
1-81-m)
By (6.9) and (6.8), the inequality (6.34) transforms to

(6.34) U, n) < 27" K,Cp1 ( ) B A&7 EDF,

ne=g
(6.35) ud (o, 1) < 4K1C,* ((p - iﬂp =~ t)) ’
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which is satisfied for
(o,t)e DY :={0<p—t<p+t<pulp—1t)}.
Finally, (6.35) implies

-
6.36 ul(o,t) < 4K, C7 p~ 12 (——p——) for (o,t) € DY,
( ) (9 )— g P (p+t)(p—t) (9 ) 1

which coincides with the estimate (6.4)
Note that C, =1/2 on {t = 0} and so

(6.37) uM(p,0) < 8K1p™", 0<p<l,
which is the upper estimate in (6.5). The proof of theorem is complete. | |

‘We conclude this section with

THEOREM 6.2. Let a(g) > 0 for p € [0,1], a € C"2[0,1]. Then forn € N,
n > 4 there erists a function fni(ee,t) € C"%(Qo) (different from the function
of Theorem 6.1) such that for the corresponding to it generalized solution u, of the
problem P,

un(p, @, t) <] o (QO \ (Oa 0, O)),

(6.38) T un(py @, p) = un(20,,0) + p' ™| cosnp| > pt"| cos mup).
Proof. The functions
vn(p,0,t) = tp™(p° — 12)"3/2(a,, cos nep + by, sin o)
are classical solutions of Protter’s problem P1*. We consider the problem

(6.39) O = tp~™(p* — 12)" %2 cosnyp

(6.40) ulg, =0, [w +a(p)d]|g, =0.

According to Theorem 5.1, the problem (6.39), (6.40) has at most one generalized
solution. Simultaneously Theorem 5.2 for this right-hand side ensure the existence
of a generalized solution in g, which is of the form

un(0, 0, 1) = ulD(g,t) cosng € C*1(0\(0,0,0))

and is a classical solution in £, € € (0,1).
Using the substitutions u') (g,1) = g%ug)(g, t), (6.8) and (6.9), the problem
(6.39), (6.40) becomes a Goursat-Darboux problem

(6.41) Un,en + c(€;mUn = g(&:m),

(6.42) Un(0,) =0,  [Uny—Ung+a(l=8Ul|,_. =0,

where ¢(£,7) is defined by (6.12), while

643) g&m) =2"F(n-&@2-n—-F (1~ o e cm2(DY).

From (6.10) and (6.43) it follows that c(€,7) < 0, g(&,7) > 0 in D for £ € (0, 1).
Hence Theorem 3.1 and Lemma 3.1 imply



SINGULARITIES OF PROTTER’S PROBLEM 25

Proposition 6.2. There ezists a classical solution U(§,n) € C™Y(Do\ (1,1))
for the problem (6.41), (6.42) for which

Ue,m =0, U (Em20, Ugdém=0 in DO

A elementary calculation shows that g(§,£) =0,

(6.4) 02(6,6) = —0e(6,6) = 31— 9" 20
(6.45) 9en(&,m) + (&, mg(€,m) = 0.
Since
_ 1 n=g3 n- %]
9q(&,m) = g(&,m) [n—& teTeot 1-7

and

1—-¢, 1 1 3

g,,(l - E,"I) = (1 — f}‘)q((eg _6(1771 n)g) [5 +n -ﬂ(ﬁ +ﬂ) + 5(5 - n)} )
for
_1 2n—3

Me =" E2n +1
we have
(6.46) g(l—emn) > Oforl—e<n<n,
(6.47) g(l—gm) < Oforn <n<l

To show (6.38), let
K, ——/_ g*(&,m) dédn > 0.
D;" -

Then
1
0<K25f Remdedn, 0<e<s.
D 2

Using arguments similar to that of Theorem 6.1, we arrive to (6.18). By (6.45), we
get
1

0<Ks< fDmgz(g,n)dgd =-—]1_EU(1—€,11)§=:(1—E,ﬂ)dﬂ-

l1—¢
- fo e (&, €)9(6,€) + U (€, )gn(£:6)] d€

Since g(£,£) = 0, the above inequality becomes

l—-¢

e
0< K, < — A U(&,£)gq(&,8) dE — fl_ Ul —&,1)gn(1 —&,m)dn

1
— | UQ—e,mga(1—e,m)dn.
1.
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Following the steps of the proof of Theorem 6.1 and using the Proposition 6.2, we
find

1 Ne
0<Kzsf Ul —&,n)lgy(1 —e&,m)ldn— 1 U(1 —€,1)lgn(1 —&,m)|dn
1 —

£

1 Tle
oS f U(l —& 1);91’1(1 - 53"7)' dﬂ - - U(l —i&yl— E)]gn(l - Eﬁ?)ld’?

= [U(l -& 1) - U(l — gl = 5)] g(l -& ne)'
By (6.43), it follows that
gl—-e&n) < En_%

and so
0< Ky <[U(L—g,1)—U(Q—¢1—e)]e 1
Finally, using (6.9), it follows that
0<K; < [u&f) (—Z-, -;-) —uld (e, 0)] et
ie.
ul® (0, 0) > u(20,0) + Kag' ™" 2 Koo' ™" Kz = 217K,
and so the estimate (6.38) holds. The proof of Theorem 6.2 is complete.l

REMARK 6.1. In [2], Theorem 2, Aldashev considers the following type prob-
lems:

Find a solution of the homogeneous wave equation Ou = 0 in o, satisfying the
nonhomogeneous boundary conditions:
PIJ: |z, = To() , g, =01(2) or
P2: wlz,=wo(z) , ulg,=01(2)

Under certain conditions, imposed on the functions 7o, &1, %0, he asserts that
both Problems P1'and P2’ are solvable in the class C () N C? ().

Comparing these conclusion with Theorems 6.1, 6.2 and the results presented
in [21], it is not difficult to see the appearing contradiction. Indeed, applying the
Duhamel’s formula to the nonhomogeous wave equation (6.6) in §p with homoge-
neous Cauchy initial dates on Xg, we find the solution of this problem in o),
expressed by explicit formulas (see, [23], pp- 226-234). Therefore, the problem
(6.6), (6.7) transforms to the problem P2’ with v(z) =0 and oy € C*"}(Zp). But
the last problem cannot be solved in C(€), because, by Theorem 6.1, for & =0
the unique generalized solution of Problem F,, has a power-type singularity of the
form p~" (see, (6.3)) at the point (0,0,0).
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OSCILLATION OF SECOND ORDER LINEAR DELAY
DIFFERENTIAL EQUATIONS

R. KOPLATADZE, G. KVINIKADZE, AND LP. STAVROULAKIS

ABSTRACT. In the present paper the problem of oscillation of all solutions of
the second order linear delay equation

u”(t) + p(t)u(r()) =0

is investigated, where p is a nonnegative locally summable function. For this
equation a general oscillation criterion is obtained showing the joint contri-
bution of the following two factors: the presence of the delay and the second
order nature of the equation. Using this criterion, effective sufficient oscillation
conditions are derived. Some of them concern delay equations only, and others
involve ordinary differential equations as well . A number of known results,
in particular a generalization of well-known Hille’s criteria to delay equations,
are improved. Several examples illustrate that some of the results obtained
are best possible in a sense.

1. INTRODUCTION

Consider the linear second order delay equation
(1.1) u”(t) + p(t)u(r(t)) =0,

where p : Ry — Ry is locally integrable, 7 : R, — R is continuous, 7(t) <t for
t >0, 7(t) — +oo as t — +oo and

(1.2) mes{s > t:p(s) >0} >0 fort=>0,

where mes denotes the Lebesgue measure on the real line. These assumptions will
be supposed to hold throughout the paper.
Let Tp = min{r(¢) : t > 0} and

Ty () =sup{s 2 0: 7(s) <t} for t2=To.

Clearly 7 _,, () 2 tfort = To, Ty is nondecreasing and coincides with the inverse
of 7 when the latter exists. Besides, put 7_, = T(_1) ©T(_1)"

A continuous function u : [to, +oo[— R is said to be a solution of (1.1) if it is
locally absolutely continuous on [Ty (t0), +co] along with its derivative and almost
everywhere on [7,_,, (o), +o0] satisfies (1.1). A solution of (1.1) is said to be proper
if it is not identically zero in any neighbourhood of +co. A proper solution is called

1991 Mathematics Subject Classification. 34K15.
Key words and phrases. Second order linear delay equation, oscillation.
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2 R. KOPLATADZE, G. KVINIKADZE. AND LP. STAVROULAKIS

oscillatory (or it is said to oscillate) if it has a sequence of zeros tending to +oo.
Otherwise it is called nonoscillatory.

We say that the equation (1.1) is oscillatory if each one of its proper solutions
oscillates. Otherwise we call (1.1) nonoscillatory.

The present paper is devoted to the problem of oscillation of (1.1). For the case
of ordinary differential equations, i.e. when 7(t) = t, the history of the problem
began as early as in 1836 by the work of Sturm [16] and was continued in 1893
by A. Kneser [11]. Essential contribution to the subject was made by E. Hille, A.
Wintner, Ph. Hartman, W. Leighton, Z. Nehari, and others (see the monograph
by C. Swanson [17] and the references cited therein). In particular, in 1948 E. Hille
[6] obtained the following well-known oscillation criteria.

Let
+00
(1.3) limsupt / p(s)ds > 1
t—+40c0 t
or
+o0 1
(1.4) liminf ¢ ft pls)ds > 7,

the conditions being assumed to be satisfied if the integral diverges. Then (1.1) with
7(t) =t is oscillatory.

For the delay differential equation (1.1) earlier oscillation results can be found
in the monographs by A. Myshkis [14] and S. Norkin [15]. In 1968 P. Waltman
[19] and in 1970 J. Bradley [1] proved that (1.1) is oscillatory if [ + p(t)dt = +oo.
Proceeding in the direction of generalization of Hille’s criteria, in 1971 J.Wong [21]
showed that if T(t) > of fort > 0 with 0 <a = 1, then the condition

“+00 1
(1.5) lgg}igtft p(s)ds > s
is sufficient for the oscillation of (1.1). In 1973 L. Erbe [2] generalized this condition
to

t——+00 8 4

(1.6) lim'mfif[‘i.cxJ 7-(S)p(s)ds > 2

without any additional restriction on 7. In 1987 J. Yan [18] obtained some general
criteria improving the previous ones.

An oscillation criterion of different type is given in 1986 by R. Koplatadze (7]
and in 1988 by J. Wei [20], where it is proved that (1.1) is oscillatory if

t

(1.7 lim sup 7(s)p(s)ds > 1
t—+oo Jr(t)

or

t
1
(1.8) liminff 7(s)p(s)ds > —.
(t) e

t—+00
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The conditions (1.7) and (1.8) are analogous to the oscillation conditions due to
Ladas, Lakshmikantham and Papadakis [13], and Koplatadze and Chanturia [9l,
respectively,

¢

(1.9) L := limsup p(s)ds > 1,
t—too Jr(t)

i
(1.10) [ := lim inf p(s)ds > %

t—+0c0 ()
for the first order delay equation
(1.11) o' (t) + p(t)u(r(t)) = 0.

The essential difference between (1.5)—(1.6) and (1.7)-(1.8) is that the first two
can guarantee oscillation for ordinary differential equations as well, while the last
two work only for delay equations. Unlike first order differential equations, where
the oscillatory character is due to the delay only, the equation (1.1) can be oscilla-
tory without any delay at all, i.e., in the case T(t) = t. Figuratively speaking, two
factors contribute to the oscillatory character of (1.1): the presence of the delay and
the second order nature of the equation. The conditions (1.5)—(1.6) and (1.7)-(1.8)
illustrate the role of these factors taken separately.

In the present paper, developing the ideas of [7], we obtain integral oscillation
criteria for (1.1) where the joint contribution of the above mentioned factors is
presented. These criteria are formulated in terms of solutions of certain integral
inequalities and enable us to obtain new effective sufficient conditions for the oscil-
lation of (1.1) generalizing (1.5)~(1.8) not only in the case of delay equations, but
for ordinary differential equations as well. Several examples illustrate their worth.

In Section 2 a number of lemmas is given showing consecutive steps of our rea-
soning. Section 3 is dedicated to oscillation criteria caused by the presence of the
delay. We show that these criteria have essentially first order character by reducing
the problem of oscillation of (1.1) to that of a first order delay differential equation.
In Section 4 we formulate a general oscillation theorem and some of its corollaries
more convenient for obtaining effective sufficient conditions. In section 5 we obtain
Hille type effective oscillation conditions for (1.1) which are due to its second order
nature.

In what follows it will be assumed that the condition

+00
(1.12) f T(s)p(s)ds = +o0

is fulfilled. As it follows from Lemma 4.1 in [8], this condition is necessary for (1.1)
to be oscillatory. The paper being devoted to the problem of oscillation of (1.1),
the condition (1.12) does not affect the generality.

2. PRELIMINARY LEMMAS

Lemma 2.1. Let (1.12) be fulfilled, u : [to, + 00[—]0, 400 be a positive solution of
(1.1) and T = 7_,,(to). Then

(i) o/(¢) > 0, u(t) 2 tw'(t) fort 2 i

(ii) u is nondecreasing on [T, +oof, while the function t — u(t)/t is nonincreasing
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on [T, +oo[;

(iii) for any function v : Ry — R satisfying

(2.1) v(t) <t for t€ Ry, v(t)—+co as t— +00,
we have

(2.2) u(T(t)) = 7/ (t) u(v(t)) for t2 max{T, v _,, (to)},
where

) (0 ={ SR

i () S vt):

Proof In view of (1.2) it is obvious that u'(t) > 0 for ¢ > 0. Let p(t) =
u(t) — t/(t). Since p'(t) = —tu’(t) 2 0for t 2T, we have either u(t) —tu'(t) >0
for ¢ > T or u(t) — tw/(t) < O for t > t; with some t; > T. To prove (i), it suffices
to show that the latter is impossible. Indeed, otherwise

(uif))’ _ tu’(t)tz— u(t) >0 for t=>t,

whence u(7(t)) > c7(t) for ¢ >ty = 7_,,(t1) with some ¢ > 0. The equation (1.1)
then yields

oo “+co
u'(tz) = /j p(s)u(r(s))ds = c/ p(s)7(s)ds

t2
which contradicts (1.12). Thus (i) is proved. (ii) is an immediate consequence of
(i), and (iii) follows from (ii). The proof is complete.

Remark 2.1. Without the condition (1.12) the following weaker versions of (i) and
(iii) are valid (see [20], Lemma 1 and [2], Lemma 2.1, respectively): for each 0 <
v < 1 there is Ty = T such that u(t) > ytu!(t) and u(7(t)) = v7,(t) u(v(t)) for
t > T.,. It should be noted that in the applications below these versions would be
sufficient.

Lemma 2.1 (i) implies
(2.4) w(r(t)) = 7(t)w'(r(t)) for t2T.
This inequality, however, can be improved.

Lemma 2.2. Let (1.12) be fulfilled, u : [to, + 00[—]0, +oo be a positive solution of
(1.1) and T = 7,_,,(to)- Then

(2.5) u(r(t)) = 7 () (@) for t=7_,)(T),
where

)
(2.6) To(t) = 7(t) + /T er()p(e)de for t27_,(T).
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Proof. Integrate the identity (u(t) — tu' @) = tp)u(r(t)) fromT to 7(t) 2 T
and use (2.5) to get

()
w(r(®) = T () + fT ep(E)u(r(E)de for t>7 (D).

To estimate the last integral, use Lemma, 2.1(iii) with v(t) = ¢, Lemma 2.1 (i) and
the nondecreasing character of u’. We get

7(t) (2) T(t) 2
/ £p(E)u(r(£))dE > f (E)p(Eyu(E)dE = [ er(E)p(En (€)dE >
T T T
7(t)
> ( ] Ef(E)p(E)dE) J(r@) for ter_, (D).

T

The last two inequalities imply (2.5). The proof is complete.
Lemma 2.2 immediately implies

Lemma 2.3. Let (1.12) be fulfilled, u : [to, + 0[]0, +00] be a positive solution
of (1.1) and T = 7_,(to). Then the function z : [T,+oco[—]0,+00| defined by
z(t) = u/(t) is a positive solution of the differential inequality

(2.7) z'(t) + 70 (H)z(T(t)) £ 0,
where 7. is defined by (2.6).

The estimate (2.5) is essential for the results of Section 3. Being more exact
than (2.4), via Lemma 2.3 it will enable us to improve the criteria (1.7) and (1.8).

The following four lemmas are crucial in proving the general oscillation theorem
in Section 4, especially Lemmas 2.5 and 2.7 giving important estimates. Note be-
forehand that a continuous function v : [T} +0o[—]0, +o0| (w : [T, +00[—]0, +00[)
is a solution of the integral inequality (2.8) (integral inequality (2.11)) if it satisfies
(2.8) ((2:11)) for t = 7_,,(T) (- = u{_l)(T)). The same is true for the integral
equations (2.17) and (2.18). Note also that solutions of these integral inequalities
and equations are necessarily positive.

Lemma 2.4. Let (1.12) be fulfilled, u : [to, + 0o[—]0, +o0[ be a positive solution
of (1.1) and T = 7_,,(to). Then the function v : [T, +00[—]0,+00] defined by

v(t) = %%-?l is a solution of the integral inequality

(2-8) v(t) 2 exp { f Zt) 77 (€) p(§)v(§) dE} , 127 (D)

Proof. We have v(t) = ﬂz%f)l)- for t > T, where, according to Lemma 2.3, zis a
positive solution of (2.7). If we rewrite (2.7) as

2.9) i;—((g < - (Op)ut) for t27,(T)

and integrate from ¢ to 7(t), then we get (2.8) thus completing the proof.
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Lemma 2.5. Let (1.12) be fulfilled, u : [to, + 0o[—]0, +c0| be a positive solution of
(1.1) and T = 7,_,,(to). Then there exists a solution v : [T, +00[—]0, +oo[ of (2.8)
such that

t
(2.10) wE)'S exp{ JREGICEG d&}u’(t} for t2s27_, (T).

5
Proof. By (2.9)
u’ (t)
uT(t)— < —rp(B)p(t)u(t) for t2T_,, (1)
where v is a solution of the (2.8). Integrating this inequality from t to s, we get
(2.10) thus completing the proof.
Lemma 2.6. Let a continuous function v : Ry — R satisfy (2.1), u : to, + co[—
10, +-00[ be a positive solution of (1.1) and T = 7,_,,(to). Then the function w :

[T, +00[—]0, +00| defined by w(t) = “1(:’((:)) ) is a solution of the integral inequality

v(t) t
e woz [ {ow [ P OPE(O & ds, 2 v, (D)

where 7/, is defined by (2.3).
Proof. If we write (1.1) as

(2.12) (W' (@) = —p(t)ig%:))l u'(t) for t>T,

then we have

(2.13) u'(t) = v/ (T) exp {— .[r p(€) —t%%g—)df} ds ort2 T,

v(t) s =
(2-14) u(v(t) = u’(T)-/.T exp {—/T p(€) -t%:((gi))‘)d&} ds fort > v_1(T).
Dividing (2.14) by (2.13) and using (2.2), we get (2.11). The proof is complete.

Lemma 2.7. Let a continuous function v : Ry — R satisfy (2.1), u : [to, + co[—
10, +c0[ be a solution of (1.1) and T = 7_,, (to). Then there ezists a solution w :
[T, +00[—]0, +00| of (2.11) such that

(2.15) u(t) > (t + /:ST/,,{S)p(S) w(s) ds) u'(t) for t>T.

Proof. Integrate the identity (u(t) —tu’ ) = tp(t) u(r(t)) fromT to t =2 T and
use (2.2) to get

(2.16) u(t) = tu’(t)—i—jt p(s)mu'(s)dsz

T ? u'(s)

(t + f:sny(s)p(s) w(s) ds) u'(t) for t > T,

v
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where, according to Lemma 2.6, w is a solution of (2.11). Thus (2.15) holds and
the proof is complete.

Since (1.12) is necessary for the oscillation of (1.1), its violation via Lemmas
2.4 and 2.6 imply the existence of solutions of (2.8) and (2.11). The following two
lemmas give more exact results which will permit us to do without the condition
(1.12) in Section 4.

Lemma 2.8. Let (1.12) be violated. Then the integral equation corresponding to
(2.8)

(2.17) v(t) = exp {f;) 7 (8) p(s)u(s) ds}

has a bounded solution.

Proof Let M > 1 be an arbitrary number. There exists § > 0 such that
exp(6M) < M. Since (1.12) is violated, there exists Ty = 0 such that f,l;: (L +
1)7(s)p(s)ds < 6, where L = f0+°° 7(s)p(s)ds. We claim that for any T > To (2:17)
has a solution v satisfying 1 < v(t) £ M for t > T. To show this, consider the
bounded convex closed set V = {v € C([T,+oof) : 1 £ v(t) £ M} in the space
C([T, +oo[) of all continuous on [T',+co[ functions with the topology of uniform
convergence on every finite interval, and consider the operator @ on V defined by

exp {f:(t) 7. (8) p(s) v(s) ds} for ¢ 2 7 (),

o= { Q@) frToStS Ty,

Since

T(8) 7(8)
j er()p(E)de < 7(s) [ (&)p(€)de < Lr(s),
T 1]

it can be easily checked that Q maps V into itself and satisfies all the conditions of
the Schauder-Tychonoff fixed point theorem (see, &.8., [3], pp.161-163). The fixed
point of Q obviously is a solution of (2.17). The proof is complete.

Lemma 2.9. Let (1.12) be violated and a continuous function v : Ry — R satisfy
(2.1). Then for all sufficiently large T' the integral equation corresponding to (2.11)

(2.18) w(t) = | e { / 1 (6)9(6) W(E)d«ﬁ} ds

T

has a solution w such that w/v is bounded.

Proof. Let M > 1,6 >0and Tp = 0 be as in the proof of Lemma 2.8. Then
for any T > To, (2.18) has a solution w satisfying v(t) < w(t) < My(t) for
t > Tp. Indeed, using the inequality 7/, (f) v(t) < 7(t), we get convinced that the
set V = {w € C([T, +oo[) : v(t) S w(t) < M v(t)} and the operator Q defined on
V by

4 ep { 177 (©) PO (E) de} ds for t v (D),

= { Q)7 (™)) for T St < vy(T)
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satisfy all the conditions of the Schauder-Tychonoff fixed point theorem. As above,
the fixed point of @ is a solution of (2.18). The proof is complete.

3. OsciLLATIONS CAUSED BY THE DELAY

In this section oscillation results are obtained for (1.1) by reducing it to a first
order equation. Since for the latter the oscillation is due solely to the delay, the
criteria hold for delay equations only and do not work in the ordinary case. The
section is independent of the general oscillation Theorem 4.1 and is based only
on Lemma 2.3. It should be observed, however, that by means of lower a priori
asymptotic estimates for v (as in Section 5 for w) Theorems 3.3 and 3.5 (unlike
Theorem 3.4) could be deduced from Corollary 4.2 below.

Lemma 2.3 immediately implies

Theorem 3.1. Let (1.12) be fulfilled and the differential inequality (2.7) have no
eventually positive solution. Then the equation (1.1) is oscillatory.

Theorem 3.1 reduces the question of oscillation of (1.1) to that of the absence of
eventually positive solutions of the differential inequality

()
3.1) z'(t) + (T(t) + fT €T(£)P(E)d£) p(t)z(7(t)) < 0.

So oscillation results for first order delay differential equations can be applied since
the oscillation of the equation

(3.2) u'(2) + g(t)u(6(t)) =0
is equivalent to the absence of eventually positive solutions of the inequality
(3.3) u'(t) + g(t)u(6(t)) <0

This fact is a simple consequence of the following comparison theorem deriving the
oscillation of (3.2) from the oscillation of the equation

(3.4) v'(t) + h(t)v(a(t)) =0
We assume that g,h : Ry — Ry are locally integrable, 6, : Ry — R are

continuous, §(t) < t, a(t) < t for t € Ry, and 6(t) — +oo, o(t) — +oo as
t — +o00.

Theorem 3.2. Let
(3.5) g(t) = h(t) and 6(f) < o(t) for t € Ry,
and let the equation (3.4) be oscillatory. Then (3.2) is also oscillatory.

Corollary 3.1. Let the equation (3.2) be oscillatory. Then the inequality (3.3) has
no eventually positive solution.
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Proof. Suppose, to the contrary, that there exists a positive solution u: [tg, +oo[—
R of (3.3). Then u is a solution of the equation v'(t) + h(t)v(6(t)) = 0, where
h(t) = —;L%;%))—) > g(t). According to Theorem 3.2, the equation (3.2) must have a
nonoscillatory solution which contradicts to the hypothesis of the corollary.

In the case §(t) = o(t) Theorem 3.2 can be found in [5] (Theorem 3.1), and in
the general case but under the additional restriction o(t) <1t in [12] (Theorem 2.8).
Since these restrictions are not imposed here, we present the proof, which, in our
opinion, is interesting by itself.

Proof of Theorem 3.2. Let, to the contrary of the assertion of the theorem, (3.2)
have a nonoscillatory solution u : [tg, +co[— R which is supposed to be positive.
In the space of all continuous on [tg, +oof functions with the topology of locally
uniform convergence consider the set V' consisting of all continuous v : [to, +oo[— R
satisfying

v(t) = u(ty) for to <t <T,

(3.6) u(t) < v(t) Sulto) for t2T,

v(a(t))
v(t) u(t)

where T = §_,,(t0). V is nonempty (u € V) and bounded. Moreover, it is convex

since

(3.7) 1<

i (o (#) +(1=Nvz (o (@) _ A [ - 1—)\}'1 v1(a(t))
Avp (8) + (1= A) vz (t) vo(t) |va(t)  wi(t) v1(t)

L= X [ A1 —)\]’1 va(o (1))
v1(t) [w2(t) v (t) uo(t)
Define the operator Q on V by

u(to) exp {— f:o h(s)ﬂl%ﬁ)né;s'} for 4 =T,

v)(t) =
Q) { u(tg) for g <t<T.
Clearly Q(v)(t) < u(to) for t > to. On the other hand, by (3.5) and (3.7) we get

for vy, v €V, t>T.

Q(v)(t) = u(to) exp {— ];: g(s) ugf((s?)ds} =u(t) for t>T,

so (3.6) is fulfilled with Qu instead of v. The same is true for (3.7) since, by (3.5)
and (3.7), we have

QWE®) __ [ [* sl
LS Qo - p{famh(s’ o(s) ds}s

‘ u(8(s) , | _ ulé@)
exp {fa(t) g(s)—as—)—ds} =0 br 12T

Thus QV C V. Besides, standard arguments show that T is completely con-
tinuous in the topology of uniform convergence on every finite segment. Hence

IA
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the Schauder-Tychonoff fixed point theorem implies the existence of vp such that
Quo = vo which obviously is a nonoscilatory solution of (3.4). The obtained con-
tradiction proves the theorem.

Turning to applications of Theorem 3.1, we will use it together with the criteria
(1.9) and (1.10) to get

Theorem 3.3. Let

t T(s)
(3.8) K := limsup f (T(S) + fo ﬁr(«s)p(é)df) p(s)ds > 1

t—+00 (%)
or
. 7 1
69)  k=lminf [ . (v-(s) + [ er(g)p(ads) p(s)ds > -

Then the equation (1.1) is oscillatory.

To apply Theorem 3.1, it suffices to note that: (i) (1.12) is fulfilled since otherwise
k = K = 0; (ii) since 7(t) — +oo as t — +00, the relations (3.8)-(3.9) imply the
same relations with 0 changed by any 7" > 0.

Remark 3.1. Theorem 3.3 improves the criteria (1.7)~(1.8) of R. Koplatadze (7] and
J. Wei [20] mentioned in the introduction. This is directly seen from (3.8)-(3.9)
and can be easily checked if we take 7(t) =t—"To and p(t) = po/ (t — 7o) for t = 27,
where the constants 7o > 0 and po > 0 satisfy 7opo < 1/e. In this case neither of
(1.7)-(1.8) is applicable for (1.1) while both (3.8)(3.9) give the positive conclusion
about its oscillation. Note also that this is exactly the case where the oscillation is
due to the delay since the corresponding equation without delay is nonoscillatory.

Remark 3.2. The criteria (3.8)—(3.9) look like (1.9)—(1.10), but there is an essential
difference between them pointed out in the introduction. The condition (1.10) is
close to the necessary one since according to [9] if L < 1/e, then (3.2) is nonoscilla-
tory. On the other hand, for an oscillatory (1.1) without delay we have k = K =0.
Nevertheless, the constant 1/e in Theorem 3.3 is also best possible in the sense that
for any € €]0,1/e] it can not be replaced by 1/e — ¢ without affecting the validity
of the theorem. This is illustrated by the following

Example 3.1. Let ¢ €]0,1/¢], 1 —ee < f < 1, 7(t) = ot and p(t) = B(1 -
B)a~Pt=?, where a = eF~1. Then (3.9) is fulfilled with 1/e replaced by 1/e — €.
Nevertheless (1.1) has a nonoscillatory solution, namely u(t) = t°. Indeed, denoting
c=pf((1- B)a—?, we see that the expression under the limit sign in (3.9) is constant
and equals ac|Ine| (1 + ac) = (B/e) (1 + (B(1 - B))/e) > Ble>1/e—e.

There is a gap between the conditions (1.9)—(1.10) and (3.8)—(3.9) when 0 <
I<1/e,l<L,and 0 <k <1 /e, k < K, respectively. In the case of first order
equations there arises an interesting problem of filling this gap, i.e. of finding of a
function f : [0,1/€] — [1/e, 1] such that the condition L > f(l) would guarantee
the oscillation of (3.2). Moreover, it makes sense to seek for an optimal function in
the sense that L < f(I) would imply nonoscillation. A number of papers are devoted
to this problem (see, for example, [4] and the references therein). Using results in
this direction, one can derive various sufficient conditions for the oscillation of (1.1).
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According to Remark 3.1, neither of them can be optimal in the above sense but
nevertheless they are of interest since they cannot be derived from Corollary 4.2
of the general oscillation theorem. We combine Theorem 3.1 with the best to our
knowledge result in this direction ([4], Corollary 1) to obtain

Theorem 3.4. Let K and k be defined by (3.8)=(3.9), 0 < k <1/e and

1 1-k-VI—2k—F?
(%) 2 ’

K>k+)\

where A(k) is the smaller root of the equation
(3.10) X = exp(kX).
Then (1.1) is oscillatory.

Finally we give a criterion which follows from Theorem 3.1 and a simplified
version of Theorem 3 in [10]. For the sake of simplicity we will formulate the
theorem in terms of 1o (see (2.6)).

Theorem 3.5. Let k be defined by (3.9), 0 < k < 1/e and

t

5(t)
lim sup p(s)70(s) exp ()\(k) ./5 | p(E)Tg(&)dE) ds > 1,

t—+o0 J§(¢) (s

where A(k) is the smaller root of the equation (3.10). Then (1.1) is oscillatory.

4. GENERAL OSCILLATION CRITERIA
In this section we prove a general oscillation theorem for (1.1). We first mention

two criteria which are immediate consequences of Lemmas 2.4 and 2.6, respectively.

Proposition 4.1. Let (1.12) be fulfilled and the integral inequality (2.8) have no
solution. Then the equation (1.1) is oscillatory.

Proposition 4.2. Let (1.12) be fulfilled and there exist a continuous function v :
R. — R satisfying (2.1) and such that for any T > v,_,,(0) the integral inequality
(2.11) has no solution. Then the equation (1.1) is oscillatory.

Now we formulate our main result.

Theorem 4.1. Let there exist continuous functions v,a, §: Ry — R such that 0,6
are nondecreasing,

(4.1) y(t) <t, T(t) <8(t) <t, 0<co(t) < §(t) for t>=0,
v(t),o(t) = +oo as t— +oo,
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and for any T > 7_,,(0), any positive solution v of (2.8) and any positive solution
w of (2.11) the inequality

b ®

£ 7(s)
(4.2) lim sup { fé 2(s) (T(s)+ fT £T/»(€)P(§)w(6)d€) x

&(t)
x exp ( ]6 - <s>p(§)v(¢*)dg) ds+

(s)

o(t) +o0 .
+ (J(t)+[T S’%(E)IJ(fc")w(E)dé)ft o (€)P(E)d§} >1

holds, where ... is defined by (2.6) and 7/, /o by (2.3). Then the equation (1.1) is
oscillatory.

Proof. First of all note that the condition (4.2) implies (1.12). Indeed, suppose
that (1.12) is violated. Then by Lemmas 2.8 and 2.9 the integral equations (2.17)
and (2.18) have solutions vy and wp, respectively, such that vg(t) < M and wp(t) <
M 7(t) with some M > 1. Using these inequalities along with the negation of
(1.12), one can easily see that for v = o and w = wp the left-hand side of (4.2) is
zero. This proves that (1.12) holds.

Suppose now that, contrary to the assertion of the theorem, the equation (1.1)
has a nonoscillatory solution u : [to, +-0o[— R which we may and will assume to be
positive. Put T = 7_,, (to). By Lemma 2.1

(4.3) u(7(t)) = 7/, (t)u(o(t)) for t2 max{T, o _,,(to)}-
On the other hand, according to Lemmas 2.5 and 2.7 and because u’ is nonincreas-

ing, there exist positive solutions v and w of the integral inequalities (2.8) and
(2.11), respectively, such that -

(4.4) u'(1(s)) > w'(8(s)) = E(v)(s,t)u'(6(2)) for t=s27_, (.,
(4.5) u(r(s)) = Fr(w)(s)u'(7(s)) for s=7_,, (1),

46)  u(o(t) = Fo(w)(t)w'(c(t)) 2 Folw)(t)e'(5(2) for t 2 o-1(T);

where for any u: Ry — R we set

5(2)
E@)(s,t) = e ( [5 RCEGES de) ,

I

p(t)
Flu(w)(?) (u(t) + fT €77,(€) p(§) w(§) d&) :
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Integrating (1.1) from 6(¢) to +oco and taking into account (4.1) and (4.3)-(4.6)
along with the nondecreasing character of u, o, and &, we get

+00

W (5(t)) > js | PO s+ j p(s) u(r(s)) ds >

’ +00
> [ HOF @ EN s +ue) [ Telelple)ds>

t +co
> u'(8(t)) { fa o p(s)Fr(w)(s) E(v)(s,t)ds + Fo (w)(t) ft 7/0(s)p(s) dS}

for large t. But this contradicts (4.2). The proof is complete.

Remark 4.1. Propositions 4.1 and 4.2 can be considered as included in Theorem 4.1
by assuming formally that if there are no such v and w, then (4.2) is automatically
fulfilled.

Theorem 4.1 and its corollaries below enable one to obtain effective sufficient
conditions for the oscillation of (1.1) by means of a priori asymptotic lower estimates
for v and w (or by means of establishing of nonexistence of v or w which in a way
may be considered as the existence of a lower estimate identically equal to +00).
We will derive nontrivial estimates of this type in Section 5.

Now we formulate some corollaries of the theorem. We begin with one which
shows the joint effect of the delay and the second order nature of (1.1) in its simplest
form.

Corollary 4.1. Let T be nondecreasing and

t—co

lim sup {ft p(s)7(s)ds + T(t) /+oo p(s) ds} - F
(t) t

Then the equation (1.1) is oscillatory. -

Taking the first term in (4.2) with »(t) = ¢ and using the obvious estimate
w(t) >t — T, we obtain

Corollary 4.2. Let there erist a nondecreasing function 6 : Ry — R satisfying
7(t) < §(t) <t fort > 0 and such that for any solution v of (2.8) the inequality

t &(t)
lim sup {f p(s)7o(s) exp (f ‘fo(ﬁ)P(ﬁ)U(ﬁ)dﬁ) ds} >1
t—oo | Ja(t) 5(s)

holds, where Ty is defined by (2.6). Then the equation (1.1) is oscillatory.

Corollary 4.2 shows the contribution of the delay to the oscillation of (1.1). As
it has been pointed out in Section 3, some of (but not all) the results of that section
could be derived from it.

Analogously, taking the second term in (4.2) with v(t) =t and using the estimate
w(t) >t — T, we obtain
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Corollary 4.3. Let there erist a nondecreasing function o : R, — R satisfying
o(t) <7(t) <t fort >0, , lijx} o(t) = +0o and such that the inequality
—+00

lim sup { (cr(t) + fom s7(s) p(s)ds) f+m p(s) ds} p % |
t—co 0 t

holds. Then the equation (1.1) is oscillatory.

In the case of ordinary differential equations Corollary 4.3 implies the following
test.

Corollary 4.4. If

¢ +00
4.7) hiriil:p { (t + /0 s p(s)ds) /t p(s) ds} >,
then the equation
(4.8) u"(t) + p(t)u(t) =0

is oscillatory.

Corollary 4.4 yields the following improvement of Hille’s criteria (1.3) and (1.4)
in the class of functions p satisfying
Co
(4.9) p(t) = ) for large t.

Corollary 4.5. Let (4.9) be fulfilled with co €]0, 1] and

+0o0 d 1
limsu t/ s)ds > ;
oLl p(s) T e

Then (4.8) is oscillatory.

The condition (4.7) improves Hille’s criteria even in the case where cp = 0. This
is illustrated by the following

Example 4.1. Let the sequences of real numbers {ax}z2; and {bx}32, be such
that ay < bg < agy1 for k=1,2,..., ax T 400 and b T 400 as k — oo, and

fm % =0, lim —% =0

k—oo by k=—0co QK41
2 2
(for instance, we can take ar = ok by = 2—"%‘—?1) Let & E]O,gl‘g‘ﬁ[ and
£ €]0, 1[ be such that (1 —§) (2 — §) (1 — &) > 1. Then for the function p defined by

Lt

128 for t €lak,bk|
-y B hiy k=1,2,..

p(t) { 0 for t €lbk,ak+1] ’ .
both conditions (1.3) and (1.4) are violated while (4.7) is fulfilled. This means that
Corollary 4.4 gives a positive answer to the question of oscillation of the equation
(4.8) even in the case where both Hille criteria fail.
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Indeed, we have

+00 +oo

limsupt p(s)ds < limsupt ds=1-6<1
t—+o0 £ t—+400 t S
and
“+co +oco 1 — Fy +oo i=—=3
lim inf ¢ p(s)ds < lim bkf z—ds = lim bk/ 5—ds =
t—+00 t k—co br 8 k—oo ey
_ pim 3200 g

k—oo  Qk+1

On the other hand, denoting a} = ax+¢&(bx—ax), we have ax/aj; — 0 and af /br — €
as k — co, so that

t +0o0
lim sup (t + f 82 p(s)ds) / p(s)ds >
t—-+co 0 t
ok N EEF
> limsup a.}:+f (1-46)ds f T8 2
k—oc0 ak a; §

k

Zlikmsup(l—i—(l—ﬁ) (1—%’5))(1—5)(1—%) >
- 2(2_5)(1-5)k(1—s)>1.

The following corollary will be used in Section 5 (we take 6(t) =t and o = v).

Corollary 4.6. Let there exist a nondecreasing continuous functionv : Ry — R
such that 0 < v(t) < 7(t) < t, v(t) — +oo ast — +oo and for any T 2 v _,, (0)
and any solution w of (2.11) the inequality

v(t) +00
limsup | v(t) + f s7,(s) p(s)w(s)ds f T, (8) p(s)ds > 1
t—oo T t

holds, where 7/, is defined by (2.3). Then the equation (1.1) is oscillatory.

Corollary 4.6, like Corollary 4.3, exhibits the role of the factors not depending
on the presence of the delay. Next section is devoted to this topic.

5. OSCILLATIONS DUE TO THE SECOND ORDER NATURE OF THE EQUATION

In this section, using Corollary 4.6, we will derive oscillation criteria for (1.1)
which are due to the second order nature of the equation. They generalize Hille’s
criterion (1.4) to delay equations.

Theorem 5.1. Let a €)0,1],7(t) > at for large t and

+00
(5.1) liminf ¢ / plsde> ele);
where
(5.2) c(a) = max{a® A1 —-A): 0< A< 1}

Then (1.1) is oscillatory.
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Proof. Let T > 0, v(t) = at, so that 7/, = 1, and w be a solution of (2.11). By
Corollary 4.6, it suffices to prove that the inequality

at +o0
(5.3) lim sup (at + f sp(s)w(s) ds) / p(s)ds>1
t—+o00 T t

holds. This is the case if limsupat f:'m p(s)ds > 1, so we can suppose that

t—+00

+o0
(5.4) tf p(s)ds < 1/a for large t.
¢
Put
+o0
(5.5) A = ltim;mf'w(t) (f p(s) ds) ;
—00 t

From (2.11) it is clear that w(t) > at =T, so A > acle) > 0. We claim
that A, > 1. Indeed, suppose to the contrary that A+ €]0,1] and take co €
] e(), hmmft f p(s)ds[. By (5.1) and (5.5) for any A €0, \.[ there is to = T
such tha.t

(5.6) w(t) (/;m p(s) ds) > A, tf;m p(s)ds > c¢o fort >to.

Hence by (2.11) we have for ¢ > to/

(5.7) w(t) = /:L exp {)\ jj »(€) (f+mp(C) dc) - dg} Ho—
:/:ex"{“ %}@:
- ( [0 dc)“‘ f a - p(g)dc) s

B =% (ot
d A 0
> ([ o) Co———_‘ —
Therefore by (5.6)

w) [ PO ( f o) T, o)

- (t /t 00 dg) 11 D L o(1) 14;0 +0(1).

Passing here to lower limit, we get

o I—ACO

> 2
Ae 2 1-X
Since A €]0, A,] was arbitrary, we have

(5.8) "IN (1 = \) 2 ¢ > c(a),
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which contradicts (5.2). The obtained contradiction shows that A, > 1. Therefore
(5.7) for any A €]1, A,] yields

we) [0z 125 ([ wou) T - o]

which tends to +oo as t — +oo. This means that A, = +oco and so in the last
inequality A can be any number from ]1, +oco[. Rewrite this inequality as

w2 25 (¢ erp(c)atc)—A [157 ~ (@]

Hence, in view of (5.4), it follows the existence of M > 0 and #; > tp such that
w(t) > Mt* for t>t,

ie, forany A > 1

(5.9) w(t) >t* for large t.

Using (5.9) for A = 2 along with (5.2) and (5.4), and integrating by parts, we
get for large ¢

(5.10) fm sp(s)w(s)ds = /at s3p(s)ds >
i

t1/2

> —tﬁ;sd (/s+oop(€)d€) -
. (t1/2 /t:op(é)dﬁmai/o:oop(f) dg_,.f:; (/3”"10(5”5) ds) >

zt(—i-i-/;mﬂa—)ds) =t(—i~+c(q)lna+£2a)lnt).

83 172 S
Hence, in view of (5.1), we have (5.3). The proof is complete.

Remark 5.1. The constant c(a) is best possible in the sense that in (5.1) the strict
inequality cannot be replaced by the nonstrict one without affecting the validity
of the theorem. Indeed, denoting by Ao the point where the maximum in (5.2) is
attained, we can see that the function u(t) = t1=*0 is a nonoscillatory solution of
the equation u”(t) + (c(a)/t*)u(at) = 0.

Remark 5.2. We have ac(a) = max{o*A\(1—A): 0 <A <1} <max{A(1-2):0<
A< 1} =1/4 for 0 < a < 1. Therefore for any €)0,1[ Theorem 5.1 improves the
result of Wong (1.5).

Remark 5.3. Using Corollary 4.6 with v(t) = ¢, we could analogously to Theorem
5.1 derive the criterion (1.7).

Now consider the case where (5.1) is violated.
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Theorem 5.2. Let a €]0,1],7(t) > at for large t,

+o0
(5.11) lim nf ¢ / p(s)ds = co €]0, ¢(a)]
and
at +00 =1 +00
(5.12) Egliip (at + ,\ofo sp(s) (/; p(€) df) ds) /t p(s)ds > 1,

where c(c) is defined by (5.2) and Ao is the smaller root of the eéuation
(5.13) a* A1 - A) = cg.
Then (1.1) is oscillatory.

Proof. In view of (5.11)—(5.13) one can choose ¢* €]0,co[ close enough to o,
£ > 0 small enough and o > 0 large enough for the inequalities

+00
t/ p(s)ds>c* for t=1o
¢

and
1

(5.14) limsup (ozt + (A" —g) _/:t sp(s) (f:cop(&) df)_ ds) f:oop(s)ds 51

t—<+0c0

to hold, where A\* is the smaller root of a1 -A) =c".
Let w be a solution of (2.11) with v(t) = of. Defining A. by (5.5) and acting as
in deriving the inequality (5.8), we get

a* 1IN (1 =\) =,

whence we get A. > A*. This means that
=1

w(t) > (A* —¢) (/jm (&) d&) ) for large t.

Therefore (5.14) and Corollary 4.6 imply that the equation (1.1) is oscillatory. The
proof is complete.
In the class of the functions p satisfying

(5.15) p(t) = :—g— for large ¢,

we can get the following result which is similar to Theorem 3.4 in the sense that it
connects the upper and lower limits of the same expression.

Theorem 5.3. Let 7(t) > ot for large t and (5.15) be fulfilled, where €]0, 1],
co €]0, c(e)] and c(a) is defined by (5.2). Let, moreover,

+00 d 1
(5.16) lim sup ¢ /; p(s)ds > ot

{—-+co

where \g is the smaller root of (5.13). Then (1.1) is oscillatory.
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Proof. Let T > 0 and w be a solution of (2.11) with v(t) = at. Denote the
left-hand side of (5.16) by p*. By (5.16) there is a sufficiently small & > 0 such that
p*a(l+ Ao — &) > 1. According to Corollary 4.6 it suffices to prove that

Ao— €

(5.17) w(t) = t for large t.

Denote fo = ltim_'_inf w(t)/t (from (2.11) it follows that 8 > a > 0), so for any
—+00
B €0, Bo] there is to > T such that w(t) > Bt for ¢ = to. Suppose first that Bco > 1.

Then (2.11) yields
ot t at Beo
I RO
to s 5 to s

al—HBeog to L

S — -1 fi t>1 L

Beg —1 ((at) or t 2t/

So (5.17) is fulfilled. Analogously, if Bco = 1, then w(t) > tln(at/tg) for large t,
and again (5.17) holds. Finally, let Sco < 1. Then, from (5.18), we get

w(t) _ ol=Feo to \ 1P
SEL g =l = forl :
t = 1= fe (1 (cxt or large t

v

(5.18) w(t)

I

Since 3 €]0, Bo| is arbitrary, passing to lower limit we obtain that A = Bpcp satisfies
o*~1A(1—2) > co. Hence Bocy > Ao which means that (5.17) is fulfilled. The proof
is complete.

Finally we consider the case where the delay, roughly speaking, is like t=.

Theorem 5.4. Let o €]0,1[ and 1t1m+1.£1§ 7(t)t~* > 0. Then the condition

+oo
lim inf ¢ f p(s)ds >0
t -~ -

t—400
is sufficient for (1.1) to be oscillatory.

Proof. The proof is quite analogous to that of Theorem 5.1, so it will be only
sketched. Let T > 0, v > 0 be such that 7(¢) > ~t* for large ¢ and w be a solution
of (2.11) with »(t) = vt*. Define A. by (5.5) and suppose first that al. < 1. Let
A < A, and 8 > 0 be such that t* t+°° p(s)ds > ( for large t. Proceeding as in
deriving (5.7), we obtain

1-A

+oco A l—aA +0oa
we) [ sz B2 ([T r0d) e s 2
Anl—al +c0 1=
> (*f 2(¢) dC) £230-9) [140(1)] 2 Ot~ [1 4 o(1)] — +o00

as t — +oo, where C > 0 is a constant. We were able to write the last inequality
since like in (5.7) we can assume that ¢* ft+°° p(s)ds <1 for large t and therefore
the (1 — A)-th power can be estimated from below independently of whether A > 1
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A < 1. Thus we have )\, = +0o which contradicts our assumption that aA. < 1.

Thus aA, > 1 and we can take A €]1/a, A[ to get

as
of

1-A

+oo A~ l=ah “+o0
we) [Ta0acx T ([T a0d) 100 +ow] = oo

t — 400, where C > 0 is a constant. Therefore A. = +o0o. Hence as in the proof
Theorem 5.1 we conclude that (5.9) holds for any A > 0. Using this inequality

with A = 2 and writing down the chain of inequalities analogous to (5.9) (instead

of
ar

M

#1/2 one has to take t®/2), we can ascertain that the conditions of Corolllary 4.6
e fulfilled with v(t) = vt*. The proof is complete.
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EXTREMITIES OF INFINITE PRODUCTS
AND THE HOLDER’S INEQUALITY

GEORGE KARAKOSTAS

ABSTRACT. We use an extension of the Hdlder’s inequality to solve some min-max
problems concerning infinite products.

1. INTRODUCTION

The purpose of this note is to show how an extension of the Holder’s inequality
can be used to obtain extreme points of functionals defined by infinite products.
More specifically consider the following problems:

Problem 1: Let DT denote the positive orthant of the unit ball in /* and consider
a fixed b := (b,) € Dt with norm ||b]|; = 1. We are interested in maximizing the

infinite product
H a'nbn ]
over all sequences (a,) € D*.

Problem 2: Consider a finite positive measure space X, m and a complex valued
function f € L*®(X,m). Then f € LP(X,m), for all'p € [1,+00]. We denote by
Ifll> the usual semi-norm of f as an element of the space L?(X,m). If >} an is
a convergent series of positive real numbers, we are interested in minimizing the

quantity
IT17% llpn

over all sequences (p,) of positive real numbers with E - =1.

It is well known that the previous problems can be solved by seeking local mini-
mum or maximum of the corresponding functionals. Here we shall give answers to
these problems by extending the well known Holder’s inequality to infinite prod-
ucts of functions. Also by this result many useful inequalities concerning series and
infinite products can be obtained.

Holder’s inequality holds for any finite set of factors, (see, e.g., [1, pp. 231-232],
or [2, pp. 63-64], or [3, p. 210}, or [4, p. 68], or [5, p. 86]) and it is met in the
following form:

1991 Mathematics Subject Classification. Primary 26D99; Secondary 40A20.
Key words and phrases. Infinite products, Holder’s inequality.
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Let fi, f2,..., fn be Lebesgue measurable functions. If 0 < p; < 4+00,i=0,1,...,7
are such that pgt = py ! +po~t + .. +pa ", and if f; € L?:, then the product
f1...fn is an element of the space LP° and it holds

(1.1) 1f1-f2eFallpo < IF1llzs-If2lloe - Frllen-

The same proof works to show that inequality (1.1) is true for LP(X, m), where
X,m is any (positive) measure space. It is the purpose of this note to show how
inequality (1.1) can be extended to (infinite) sequences of functions.

2. THE MAIN RESULT

Let X be a nonempty set and let m be a positive measure on X.

Theorem. Let po be a positive real number and let (p;) be a sequence such that
1<p; < +o0,i=1,2,.. and

po = Zpe:—l-

(Notice that <% is taken to be 0.) Assume also that for each indez i a function f;
is given in the space LP* (X, m). If the infinite product I1f; converges a.e. on X to

a certain f, then f belongs to LP° (X, m) and it satisfies the inequality
(2.1) £ llpo < TT 1illp:-

Proof. Assume first that po = 1 and m(X) = 1.

Let B represent the right side of inequality (2.1). If B = 400, then we have
nothing to show. So, assume that B < +oo.

We suppose that B > 0. Then lim||fallp, = 1. For each 7 let gn» be a real
number defined by T

n

Then limg, = +oc and, MOTEOVET, Prnt1 = In+1; for all n. Therefore each element
h of the space LP~+1(X,m) is also an element of L+ (X, m) and it holds

(2.2) 1llgnss < IPllpnss-

Let € > 0 be a fixed real number. Then there is an index ng such that

(2.3) T I1ill: < BeS,

i=1

for all n > no . Fix such an index n and observe that because of (1.1) and (2.3) it
holds

Py
An+41

flfl-f2---fn-fn+1ldm < H[][fdpidm]pli[/ |frst |9+ dm)
i=1
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< Be®|| frt1llgnss

Therefore taking into account relation (2.2) we get

[ |f1-f2- fa-fnaldm < Be® || fn+1llpnss-

Applying Fatou’s lemma and keeping in mind that the number e is arbitrary, we
get

(2.4) 17l =TT £l < T 0%

in the case of B > 0.

If B = 0, then (2.4) also holds. To see this we follow the same procedure as
above with the factor Be® being replaced by the number € and taking into account
that || fa+1llp.,: < 1, eventually for all indices 7.

If X has measure m(X) =: M > 0, we can apply the previous inequality with
respect to the measure %% to see that (2.4) also holds.

If the space X is o-finite, it can be written as the union of an increasing sequence
of sets X; with finite measure. Then (2.4) is valid over all subspaces X, namely,
for f; € LP*(X,m) it holds

/X,. |fldm < H[ij \filPedm]

lp:-

or
[ leXJ |dm < H[/ |ff-'XX,‘ Ipidm];l;s

for all indices j. Applying the monotone convergence theorem, we easily get (2.4).

Finally, assume that po is not necessarily equal to 1. Then, considering the
numbers % and applying (2.4) to |fi|[? we obtain inequality (2.1). The proof of
the theorem is complete. O

Remark.
If m is the discrete measure, then inequality (2.1) takes the form
A g
([T leinlirerzs < JTDleinl™)-
for any sequence (¢;n)-

3. THE ANSWERS TO THE PROBLEMS AND SOME INEQUALITIES

Assume that a := (a,) and b := (b,) are two convergent sequences of nonnegative
real numbers. Applying the previous theorem on the corresponding sequences of
functions we get the following inequalities:

1. X = (—00,0], fa(s) = exp(ans) and pn = %b, or X := R, fu(s) ==

2 .
ezp(Tar) and pr = gﬂl or X := (0,+00), fa(s) := s~e7% and pn := llg.il;

Then we get
[Z bn]zb" H amb’“ < [Z anlz bn H bmbm .
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Thus, the maximum of the quantity [1an’, over all (ax) in the positive orthant
D+ of the unit disc in the space I, is attained by the sequence (“%ﬁ;) , where ||b]|1
is the norm of the sequence (b,) as an element of the space l;, i.e. the limit of the
series 3 b,. This solves our first problem. For example one can easily derive that

1
1'm:zac{]___[c:xv.?{l'T : (an) € DV} = I

2. X :=1[0,1], fn(s) := s**~ and p, = ﬂg'f. Then for any real number ¢ with
tllall + 1 > 0, we get '

T Ganllbll +ba)° < (ellalls + 1)k TT et

3. X :=[0,1],t > -1, fa(s) == sTe5 and Pn = I—'—g—“i. Then we obtain

n

TT (tanllblls + ballall)®™ < [t + Dllall]™: [T oz

4. Applying the above main result we conclude that given a sequence (pn) of
positive real numbers, with 3" p,~* = 1, it holds [ |f|*dm < I1117%"|lp.., where a is
the limit of the series 3 an. Equality holds for p, := a, "} for all n. Therefore the
minimum of the infinite product [T || £~ ||». over all such sequences (p») is equal to
ll712]l: and it is attained by the sequence pn := aan"!. This gives the answer to
the second problem in the begining of this note.
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ON AN INTEGRAL FUNCTIONAL INEQUALITY

P. CH. TSAMATOS

ABSTRACT. In this paper, we establish upper bounds for the solutions of some func-
tional integral inequalities.

1. INTRODUCTION

In a recent paper Pachpate [1] has obtained upper bounds for the solutions of
the following integral inequalities

@ Posdizf ' F(&)2(o () Wialo(s))) + hs)a(o(s))] ds,

8

® #Osdz [ t [Fepetato ([ oW (o)) ) +h(3)a(a(s)] ds, |

©)
2 <z | [f(s>m(a(s)) ( ) g(T)W(tog:c(a(ﬂ))df) T h(s)m(a(s))] s
for t € [0, 00), with the conditions
2(t) = 9(t) < .t < [min o), 0,

and
o € C([0,00),R), with o(t) <t,t¢€[0,00).

The purpose of this note is to obtain upper bounds for the solutions of more
general integral inequalities of the following form

) @< ()™ (o ()W (@ (02(s))) + h(s)H(oa(s))] ds,

1991 Mathematics Subject Classification. 34K10.
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n>r>0 0<ml<n-r,

(B1) t
@) < +n [ |16am(ox(s) ( /

n>r>0 0<m,l<n-r,

]

g(f)wu’"(az(r)))dr) + h(S)ml(Us(S))] ds,

(L)
x“l(t) <osn [ t [r@ameen ([ 'r)Wloga(aa(m))dr ) +h(5)z'(02(6) | ds

n>0, 0<m,l<n,

where ¢ € [0, 00).
Also, in all above cases we suppose that

(€) z(t) =9¥(t) < ¢, t € [a,0], where 9 is a given real function

defined on [a,0] and a = min;—; » 3 {mine;(t) : t € [0,00)}.

2. MAIN RESULT

For our convenience we list bellow the assumptions we will use in the next the-
(H1) 0; € C([0,00), R), with 0;(t) <t, te[0,00),i=1,23.
(H2) f € C([Ov OO), [0,00))
(H3) h e C({Os 00), [07 OO))
(Hs) g€ C(]0,00), [0, 0)).
(Hs) z € C(la,00),[zg,00)), 20 >0,c 2 1.
(Hs) TE C([a,oo), [ZQ,OO)),I() =le=1
(Hr)

W € C([0,00), [0, 00)) is nondecreasing, W(z) > 0, z > x
and W(zo) =0.

Theorem. (i) Inequality (A;) with (C) and assumptions (H;),i=1,2,3,5,7 imply

¢ t -
(1) z(t) < [G_l [G (c" -l—rf h(s)ds) +rf f(s)dsH ,0<t< By
0 0
(i1) Inequality (B;) with (C) and assumptions (H;),i=1,2,3,4,5,7 imply

(2)

z(t) < [G" [G (c"+r/0th(s)ds) +rf0tf(s) (fosg('r)df) ds” % ,0<t < Bo.

(i11) Inequality (L,) with (C) and assumptions (H;),i=1,2,3,4,6,7 imply
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(3)

z(t) < exp [G"l [G (logc—i— ./: h(s)ds) - ]:f(s) (/: Q(T)dT) ds” O <t < s,

where . g
s
— _ >
G(u) fo W(s)au 2 Ug > Zo,

G~! is the inverse of G and the numbers B;,i = 1,2,3 are choosen so that the
quantities in the square bracets in (1), (2), (8) are in the range of G.

Proof. In the following we give in details the proof of (ii) and (iii). The proof of
the assertion (i) can be done easily following the proof of (ii).
(ii) We define a function u: [0, 00) — [0, 00), by

s

W) = (crey+n [ t [f(s)wm(ol(s)) ( I g(r)W(x*‘(az(T)))dr) + h(s)zH(os (s))] s,

where ¢ > 0, is an arbritrary constant. Then we have
u(0) =c+e
and

(4)
nu™ (' (t) = nf(t)z™ (01 (t))‘/; g(T)W{(z" (o2(7))dT + h(t)z' (o3(t)),t € [0, 00).

Now, if 0 < 07(t) < t, we have

(1) < w0 (1)
= (c+¢&)"
+n [ "o (10210 ([ oW e @atear ) + e)a'tos(e))| do
<(c+e)"
+n [ [ream o (| W s ) + h(o)a s (e) | ds
=4t}
Also, if a < 01(t) < 0, we have
z(o1 (t) = ¥(o1 (1)) < c+e < ult).
Thus, in any case we have

z(o1(t)) < u(t),t € [0,00).
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Similarly, we have also
z(o;(t)) < u(t),t € [0,00),i=2,3.
By (4), since 0 < m,l < n — 7, we have
t
u™ (t)u'(8) < FE)u" () f g(T)W (u"(1))dr + u™""(£)h(t),t € [0, 00).
0

or
i

u" ' (t) < f(t)j g(m)W(u")(r)dr + h(t),t € [0, 00).
0
Integrating both sides from 0 to ¢ we have
@ <stt) +r [ 16 ([ deW @) ds,te o.00)

where .
plt) = (c+&) +7 [ h(s)ds, t € [0, 00).
0

For an arbritrary T € [0, 00) we have

w@ <o +r [ 16) () W ie)ir) date 0.0
We set

w0 =@ +7 [ 16 ([ oW m)ic) ds,t < 0,.0)

Since u”(t) < v(t), t € [0,T] and W is nondecreasing, we have

t

v'(t) S rfER)W(v(t)) jo g(r)dr,t € [0, T).

Thus ;
F6(@) <r76) [ ardrte0T]

Integrating both sides from 0 to T', we have
T 8
G() < Gy +r [ 16)([ atrinds

Hence

v(T) < G™1 [G(p(T)) -+ rjoT f(s) (fosg('r)d'r) ds] )
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Since T is arbritrary and z(¢) < u(t), t € [0,00), the result is obvious by letting
g—0.

(iii) We define a function u: [0,00) — [0, 0), by

() = (cre)n | [f(s)mm(al(sn ( / Sg(fr)waogm(oz(f)))dr) i h(s)m’(as(s))] ds,

where € > 0, is an arbritrary constant. Then

u(0) =c+e

and for every t € [0, 00) we have

t
(5) nutTl(R)u'(t) = nf(t)z™ (o1(t)) A g(r)W (logz(02(7)))dr + h(t)z' (03(t)).

As in the proof of step (i) and, since 0 < m,! < n, we can prove that
z™(0:(t)) <u™(t) and z'(oi(t) <u™(t), tel0,00),i=1,2,3.

Hence, by (5) we have

L0 (1) < FE)u™(@) fo t g(T)W (logu(r))dr + h(t)u™(t), t € [0, 00).

or
?"T(;)) < f(t)j; g(T)W (logu(t))dr + h(-t-),t € [0,00).

Integrating both sides from 0 to ¢, we have

i ]
logu(t) < p(t) + /0 F(s)( /; g(T)W (logu(r))dr)ds, t € [0, 0),
where t
P(t) = log(c+e) + / h(s)ds.
0

We omit the rest of the proof since it is similar to that in the above step (i). O
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Abstract

The homogeneous, one—dimensional, non-linear thermoelasticity is
studied from the point of view of symmetries and similarity solutions.
Special cases of free energy function and conductivity function are
considered and the corresponding admitted symmetry group of trans-
formations are derived. Also, the similarity solutions, if any, for each
symmetry group are provided. Finally, the whole procedure is checked
by means of obtaining the reduction of the system of partial differ-
ential equations to a system of ordinary differential equations by the
insertion of the similarity solutions into them.

1 Introduction

This paper is the second part of a work concerning the symmetries of non-
linear, one-dimensional, dynamical thermoelasticity. In the first part [1] the
general non-homogeneous problem was concidered. In [2] some preliminary
results concerning the homogeneous case are presented. The present paper
intends to exhaust the homogeneous case.

By the term "non-linear”, we mean non-linearity coming into the system
through constitutive relations i.e., assuming a general non-linear (actually
more than quadratic) free energy function. On the other hand, this is not
the real full non-linear thermoelasticity because the linear relation between
heat conduction and temperature field i.e., the well-known Fourier law is
considered.



The concept of symmetry of a differential equation has been introduced
by Sophus Lie one hundred years ago. To find out the symmetries of a
differential equation means to find out the continuous group of transforma-
tions (actually they are Lie groups) under which the differential equation is
invariant. Having such symmetries, one can obtain new solutions from an
existing one and the so-called group-invariant solutions [3]; the well-known
similarity (or self-similar) solutions is nothing but a special case of group-
invariant solutions corresponding to the scaling group. Generally speaking,
the more symmetries of a differential equation we know the more we know
about the differential equation itself.

The fundamental ideas of S. Lie can be fruitfully coupled with concepts
coming from exterior calculus [4]. According to this the main idea is based
on Cartan’s work by which one can obtain a geometric description of a
partial differential equation in terms of closed ideals of exterior differential
forms. Next, one has to find out the so-called isovector fields which in turn
are defined to be the vector fields on the space of dependent and indepe-
dent variables, over which the Lie derivatives of Cartan’s exterior differential
forms remain invariant. These are nothing more but the infinitesimal gen-
erators [3] of the Lie group of transformations.

Most of the researchers of the area use the so—called determining equa-
tions i.e., an overdetermined system of linear PDEs which govern the com-
ponents of the isovector field, to obtain the symmetries of a differential
equation. This procedure to obtain symmetries relies directly on Lie groups
theory applied to the particular case of transformations group. We refer to
the books of Ibragimov [5], Olver [3] and Bluman and Cole [6] for further
information for the interested reader.

In Sect. 2, we summarize some results derived in [1] which are useful to
the present paper. In Sect. 3, we give the isovector field for the homogeneous
thermoelasticity and in Sect. 4, we examine special cases of symmetries
corresponding to various cases of free energy and conductivity functions.
Finally, in Sect. 5, we provide the similarity solutions arising from every
non—trivial symmetry.



2 Equations of Thermoelasticity and Some Previ-
ous Results

In the first part of this work [1] we examined the system of thermoelasticity
equations:

o O0F, 0
B—X(a—p)—g(f?o(x)v)— 0,

(1)
o0 0. 0F. QOF 88

(k( )8X)+§( 5@*)—%5 =0,

where x(X,t) is the motion of the body, p = gradz is the gradient of
deformation, v = %}3 is the velocity, 8(X,t) is the absolute temperature
field, p(X) is the mass density, k¥ = k(X) is the conductivity function and
F = F(X,p,0) is the free energy function. By X is denoted the material
coordinate and by ¢ the time. The symmetries of this system are given by
the components of the isovector field given by the equations [1]

w?(t) = byt + bs,

Ql
92

w(X)=aX + e,
(

X, t,z) = agzx + Bat + B4(X),
9) = ,u.29, (2)

where a = £(by — a2 — £) and ay, by, b3, Bs, p2, ¢, 1 are arbitrary constants
and (3, is an arbitrary function of X.
The free energy function F' should have the form

F(X,p,0) = f(X,p)8° + ¢(X,p), (3)

where the functions f and ¢ should fulfil the partial differential equations

(
(

(5a+2) f + (aX + c1) fx + (B (X) + pb) f, = 0, (4)
5a¢ + (aX + ¢1)éx + (B (X) + pb)¢, = 0, (5)

where d
b= —5(52—3@—%), p=pr, PB(X)=_Lsz). (6)



In the present paper we focus our attention on non-linear homogeneous
thermoelasticity the field equations of which can be written in the form of

balance equations as
3 BF 3([)0?))

0 06, o0, O0F, OFOQ90 -
KX)o+ 2 (05~ 5 =0, ®

where py is the mass density which is now considered constant throughout
the body. The free energy function does not depend any more on space
variable X, namely, F = F(p,6). It is important to note that although
we assume homogeneity in material properties, we do not consider constant
thermal conductivity as one could expect. on the contrary, we continue to
consider non-homogeneity with respect to thermal properties because as it
will be apparent later accepting constant conductivity will cause cancellation
of every non-trivial symmetry. Also, it is worthwhile to remark that actually
we do not have a single system of partial differential equations but a class
of systems depending on the particular form of free energy function F.

The main step towards the symmetries of the system is to obtain the
isovector field, that is a vector field of the form

et 9 20 10 20

V-waX—i- at-f—ﬂa +989 (9)
To find out the isovector field (infinitesimal generator) of the system we
follow a method proposed by Suhubi [7]. This method was used by Suhubi
himeself to study the similarity solutions for plane waves in hyperelastic
materials [8). Also, the author of this article used the method to study
the non-homogeneous, one-dimensional problem of thermoelasticity. The
interested reader can find in [1] the formulation of the problem and all
technical details which are not repeated here. For the time being, the only
difference with [1] is that f as well as pp do not depend on the space variable
X, that means we adopt what is obtained in [1] for the isovector field, namely
egs (3.33):

w=wl(X), W?=u?(t), QU =0NX,tzx), OF=0%(X,t06).

Furthermore, we have to adopt equations (3.34), (3.35), (3.36) and (3.39)
of [1] provided that all partial derivatives with respect to X are taken zero.
An elaboration of these equations in a manner analogous to [1], will give us
the following equations:



ont  an? ont r o

(! +2w 2—8—+—)Fp6+9 Fp99+( —pw? +p—5 ) Fppo = 0, (10)
o902 LY. o PR 1o
3—XFpe ~ P g 5 (8X2 —pws + ZPBX(? )F =0, (11)
’ . 92 '
[(k /k)w! + w?](8Fpp + Fy) = -6—Fg —wl Fy + Q2 (Fyy + 0F )
a0
691 i aﬂl
+9F90p(5y —pw +PE;J, (12)
52002 s} 392 ! 820!
Faxz TE ax o 0T+ (oxar T Popar T =0, (13)
! . ont ' on?
o092 ant
(' /k)w? — o i 2+W - ——|0Fy, = O (Fop + 0Fpap) +
ot ot

aX 1 +p Or )9F9PP (15)

Moreover, we obtain straightforwardly from eq. (3.34) and (3.35) of [1],
some information concerning the components of the isovector field, namely
the relations:

oo _ o 1. &

2 =% a3 axae %
6292 8292 1 ! ! #
== 0, T 5(—[(Jrc /)W +wl). (16)

Next, a detailed elaboration of these equations (see Appendix) will give
the following information concerning the general form of isovector field, i.e.,
the symmetries of eqs. (7)-(8) as well as some constraints on the general
form of F' and k. Hence the isovector field will take the form:

WHX) =1 X + ¢,

W2 (t) = byt® + bot + b3,

QNX,t,z) = btz + asx + B1tX + Bot + B3 X + B,

Q2(t,0) = —4b1t0 + 19, (17)



where ¢1, ¢o, b1, b2, b3, as, 51, B2, B3, B4, 141 are arbitrary conctants, thus for
the time being, we have obtained a ll-parameter group of infinitesomal
transformations. It is important to warn the reader that the parameters in
(17) are not related necessarily with the corresponding ones of (2). Further-
more, it is noted that the number of the parameters will reduce as it will be
apparent in next section.

The free energy function is constrained to have the form

F(p,6) = f(p)6* + ¢(p), (18)

where f and ¢ are arbitrary functions and the conductivity function should
fulfil the equations

(k' /k)wt = ¢, (19)
where ¢ is an arbitrary constant and
; : . ()2 1
(k /k)w! + 3w? — 2w + aa—g - 22% =i, (20)

3 The Isovector Field

In this section, after an exchausting elaboration of egs (11)—(20), we will
give the main result, that is the isovector field for homogeneous thermoe-
lasticity. The way we follow to elaborate them demands that equations
(11)—(15) admit isovector field (17). This will result in new equations to
which functions f and ¢ should obey, which in turn will provide new rela-
tionships for the parameters and the isovector itself. Before we apply this
procedure, we insert (17) into relationship (20) to obtain

c= —3bs + 2¢; — 1 + 2as. (21)
Next, inserting isovector field (17) into eq. (11) we get

(—c1 + 2(2byt + by) — (b1t + ag) + (—4byt + p1)26f, +
(—4b1t + p1)20fp + (61t + B3 — pe1 + p(brt + a2)26f, = 0,

from which we obtain

(—c1 +2by —ag + 2m) fp + (B3 —p(c1 — a2)) fop = 0, (22)
—5b1fp + (B1 + pb1) fop = 0. (23)



Doing the same with eq. (12) will give nothing because, provided egs. (17),
it (eq. (12)) is fulfilled identically.
Equation (13) with the help of relationship (21) will give

(4bg — 5cy + 21 —4dag) f + (B3 — ple1 — ag)) fp = 0, (24)
—4by f + (B1 + pb1) fp = 0. (25)

The same procedure applied on eq. (14) will give eq. (25) too.
Following the same line of argument, eq. (15) in turn will become
O [—4b1 fpp + (81 + Pb1) Fopp) + t{4b1000p + (B1 + Pb1) Fopp] +
6[(—2c1 + 263 + 211) fpp + [B3 — p(c1 — a2)] fopp] +
[(—2¢1 + 2b2)pp + [B3 — Pc1 — a2)]dppp] = 0,

from which we obtain

(_201 + 2by + Qﬂl)fpp + [183 - p(cl - aZ)]fPPP =0, (26)
—4b1 fpp + (1 + Pby1) fopp = 0, (27)

4b1¢pp -+ (JBI = pbl)fppp =0, (28)

(=2¢1 + 2b2)dpp + [B3 — p(c1 — a2)]dppp = 0. (29)

The last one of the equations we treat, namely eq. (16), does not have any
interest because it provides eqs. (22)—(23) which we have already taken
from eq. (11). To clear up the situation we remark that all the equations
(22)—(27) concern function f, so they should be valid simoultaneously. De-
manding this we can obtain new relationships between the parameters, which
will lead to the reduction of parameters number that is the modification of
the isovector field itself.

It is easy for one to see that equations (22), (23) and (26), (27) respec-
tively are compatible, by means that the former provides the latter by a
simple derivation. Hence, we treat only egs. (22), (23) which in turn should
be compatible to egs. (24)—(25). Differentiating eq. (25) we take

=3b1fp + (B1 + pb1) fp, = 0. (30)
Comparing this with eq. (23), we obtain
by =0, (31)

and
/1 =0, or f constant. (32)



Obviously, choosing f to be constant, we conclude a free energy function of
the form
F(p,0) = X\6? + ¢(p), )\ constant

which does not provide coupled thermoelasticity, hence we proceed adopting
the first choice, i.e.,
B1=0 : (33)

Differentiating now eq. (24), we obtain

(4by — 6c; + 23 — 3ag) fp + (B3 — plc1 — @2)) fpp = 0,

which after comparison with eq. (22) will give
2
e = 3(52 — az). (34)

After obtaining the relationships (31), (33) and (34) betwwen the parame-
ters, it remains a unique differential equation that f should fulfil

(4b2 + p1 — ag)f + (B5 — £(262 = Ta)) f, = 0. (35)

The same is true for function ¢. Inserting egs. (30), (32) and (33) into egs.
(28) and (29), the former is fulfilled identically and the latter takes the form

4

= (22 — 702)) gy = 0. (36)

%(352 + 2a3)dpp + (B3 —
It is now apparent that the only meaningful choice regarding proposition (32)
is B1 = 0. Otherwise, we will necessarily conclude that ¢ = constant which
does not make any sense for thermoelasticity. Actually, there will rise a free
energy function depending only on temparature field 4, thus appropriate for
a linear heat conduction theory for rigid media. °
Let us return to the differential equation (19) governing the behavior of
the conductivity function k. We recall this equation as it is

(k /) =, (37)

noting that ¢ is not any more an arbitrary constant, but it is linked with
the parameters of the symmetry group through the relationship
11 6
c= —‘5—62 4 5% — B (38)

8



Equation (38) directly rises from eqgs. (21) and (34).
We are passing now to the isovector field in which we enter all information
about the parameters, inserting eqgs. (31), (33) and (34) into eq. (17)

2
w(X) = g(bz —a)X + ¢y,

wQ(t) = bat + b3,
ONX,t,2) = apz + Bat + B3.X + Bu,
02(1.0) = a6, (39)

Thus, we finally obtain a 8-parameter group of transformations which we
will examine in detail in the next section. For the time being, summarizing
our main conclusion we can claim:

The symmetry group admitted by the system of one-dimensional, non-linear,
homogeneous thermoelasticity (7), (8), is given by (89) provided that the free
energy function is of the form

F(p,6) = f(p)6* + ¢(p), (40)

where the functions f and ¢ fulfil the differential equations (35) and (36), re-
spectively and the heat conductivity function k is governed by the differential
equation (36) - 37).

4 Special Cases of Symmetries

The results presented in last section continue to be so general that they can
not let us scrutinize particular cases of probably practical interest. This is
due to the fact that our main equations (7) and (8) are not a sole system;
actually they make up a class of equations, depended upon free energy func-
tion F'. Hence, for every choice of F' we take a seperate member of the class.
To talk about symmetries one must first talk about the form of function F.
This is already apparent due to the fact that our main result on admissi-
ble symmetries (39) depends on the class of functions F having the form
(40). To proceed further one need to have particular F, or to put further
constraints on the free energy function. This is exactly our next step.



4.1 The funcion f is arbitrary

Letting full arbitrariness to f means the differential equation (35) is valid
for every f, hence the coefficients of the equation should be

7 5
/83 = 0: b2 = 5025 H1 = ‘_’Q‘GQ. (41)

After eqs. (41), the isovector field (39) becomes
w(X) = asX + ¢y,
W2(2) = ga2t+ bs,
O} (t,z) = agz + Bat + b,
02(9) = _gage (42)

and the differential equations for ¢ and k become

gg?ia%ﬁpp =0=¢pp =0, for aa#0

and
(k' [k)w! = —day.

Hence we obtain
E(X) = (aa X + Cg)_4, o(p) = ¢1p + P2, (43)

where ¢y, ¢1 and ¢3 are arbitrary constants. Hence, for the case under study
our initial system (7)—(8) is constrained to have the form

0’z od &z
f 2_ ! e - =
P 100 &z o0 gt OB
H(X) g + K@) 55 + 2/ (0)0%; + 21 ()05 = 0. (45)

We summarize what we have found for this particular case in the following
statement:
If the differential equations ({4)—(45) admit the symmetries given by isovec-
tor field (42), for arbitrary f then the function k will be necessarily of the
form (43a).

Looking at the isovector field (42) we can recognize that the parameter ay
gives the scaling (symmetry) and ¢, b3 and (34 are related with translations

10



with respect to X, ¢ and z, respectively. It is worthwhile to further examine
the symmetry of scalings, thus toset ap #0 and ey = b3 =B =6; =0. In
other words we examine the particular infinitesimal generator

& 7.9 8 5.0
V=X—+ + g = 2050,

=
X 2 ot
or the particular Lie group of finite transformations of scaloing type
X=X "= eget, =gy, #= e3¢d. (46)

The previous analysis secures that the transformation group (46) is ad-
mitted by PDE (44)—(45) provided the conductivity function k is of the
particular form

EX) =X (47)

4.2 The function ¢ is arbtrirary

We let now eq. (36) be valid for every ¢ which results

2 7
by = —302, by = 592, B3 =0. (48)

Relations (48) make sense only if as = by = 0. Hence the isovector field (39)
becomes

wH(X) = e,

w(t) = bs,

Ql(ta CL‘) = ﬁ?t g 164:

0%(9) = 116 (49)
and eq. (35) takes the form

2u1 f=0.

If we want to keep the symmetry related to the parameter u;, we must
necessarily consider f = 0, which in turn means that

F=F(p)=¢(p), ¢ arbitrary,

which, certainly, does not lead to any kind of thermoelasticity. In order to
have thermoelasticity, we must put p; = 0, hence f is an arbitrary function

11



and the isovector field becomes

1

Ww" = Cag,

w? = b,

Ql(t) = ﬂ?t + ﬁ41

Q=0 : (50)

and the free energy funcion will take the form

F(p,0) = f(p)6* + ¢(p), (51)

where f and ¢ are arbitrary functions.

We examine now the specific symmetry corresponding to the parameter
B2 # 0, which arises within the case 4.1 as well. (It is worthwhile to examine
whether the case 4.1 for 8 # 0 will give us the arbitrariness of ¢ which we
enjoy in the present case). In other words we discuss about the symmetry

Xt=X, th=t, a¥=2+t " =0. (52)
Recalling now that equation k(X) should obey
(k' /k)w' = —day,

it is easy to conclude that &' = 0, thus the function k(X) is becoming a
simple constant. After that the field equations of thermoelasticity (i.e., egs.
(7)—(8) will take the form:

2 0o A%z
" 2 /" ! el il g
[ 0)6° + ¢" (D)l 553 + 27 (0)0 5% — Pogm =0, (53)
0%z 06 T

Concluding, we can claim that the symmetry group given by egs. (52) is
the unique symmetry that is admitted by full homogeneous (k, py constants)
non-linear thermoelastic materials governed by egs. (58)—(54).

4.3 The function k is arbitrary

In order the function & to be an arbitrary one, i.e., every function & to satisfy
the differential equation (37), we must put

w1 =0, ¢=0, (55)



from which we conclude straightforwordly
by =az, c2=0. (56)
Furthermore, in virtue of eq. (38) we obtain
p1 = —az. , (57)
So, after egs. (56)—(57) we obtain for the comonents of the isovector field:
W' =0,
w?(t) = ast + b,

QYX,t,2) = agx + Fat + B3X + Ba,
Q2(8) = —ayh. (58)

Coming back now, to egs. (35)—(36) which for the case under study they
take the specific form

2a2f — (B3 + pazg) fp =0,
2a2¢pp + (ﬁS +pa'2)¢ppp = 0. (59)

After that, the field equations (7)-(8) for the four-parameter symmetry
group (58) take the form

I " 62
[ ()% + ¢ (p)] 5 X2 +2f (p)9 poé =0, (60)
Lo OO o924 & x
k(X)aX+k(X)aX2+2f(p)9—+2f p)e??axat:ﬂ. (61)

The most interesting symmetry for the case under discussion seems to
be the corresponding one to the parameter as:

0 0 0 0
V= ﬁ-+t§+$£—96—9,

or in the form of a transformation group
X*=X, t'=¢et a*=¢z, 0 =e*0. (62)

For this particular symmetry, the differential equations (59)—(60) take the
form

2f ~ply =0,

13



Thus the functions f and ¢ should have the form

flp) =Cip®, ¢(p) = Calnp+ C3p+Cy, (64)

where Cq,Cs,C3 and Cy are arbitrary constants.

5 Similarity Solutions

The next question is whether the symmetries we have found in last section,
give any of the so-called group invariant solutions. We remind here that
an invariant solution for a group of transformations admitted by the field
equations, is nothing but a solution of the field equations which moreover is
invariant under this group. The well-known similarity solutions are invariant
solutions corresponding to the particular case of a scaling group. That means
that a solution (z,6) of the field equations (7)—(8) is an invariant one, for
a given symmetry in the form of eq. (9), with w? # 0,i = 1,2, if they fulfil
the differential equations

W . 1
6,X-|- v Q-
V)
wlg% + w2% — 02 (65)

So, we have to check all symmetries deriving in last section under this re-
quirement
e Symmetry given by egs. (46).
In this case the PDEs (65) take the form
Oz 7 0x

X ot ater =2, (66)

80 7.00 5
Koz + gtae = —20: (67)

Their solutions will be

o(X,8) = u(§)X, 0(z,8)=v(€)X %, (68)

where £ = X +~% is the similarity variable. Thus the function given by egs.
(68) will be the similarity solution of field equations (44)—(45). In order to
check this, we have to carry out some calculations:

p= 2% — () Do X +ule) =/ (€ X +ule) =

14



p=&u'(§) + u(§). (69)

In the same manner we obtain

2 2

g = () + (), (10)

® = -luert, - (71)

4 1 1

L= i ”(s)gst—— wiger, 72
62 " 2,— 4 ' -1

xXaE —?U ©er - U (O™, (73)

2 =v(gext - Juiext, (74)
26 9

= (@8 — 5/ (e + Zu(g)x3, (75)
) 2

% = —5’01(5)8_1- (76)

Substituting now eqs. (47) and (67)—(76) into eqgs. (44)—(45), we obtain
F(PYR (280 + ") + ' (p) (260! —50°) = pol g5 %0 + €)= 0, (77)

7 4 9
C(e%" — 96 + v-f-'t})—;ff(p)givvf—% (p) 2(5_ "+2§2u) 0. (78)

It is worthwhile to note that the above system consists of highly non-linear
but ordinary differential equations as we expected to. This is an indirect
confirmation that all the previous analysis was carried out correctly.

e Symmetry given by egs. (62)

In this case, egs. (65) will take the form

6‘x 36

= =Y 7Y

Hence, the similarity solutions corresponding to the symmetry (62) must be
of the form
z(X,t) = u(X)t, 6(z,t) = v(X)t71, (80)

where u and v are arbitrary functions of X. To be sure that eqs. (80) are
indeed similarity solutions we must check whether they reduce the number
of the indepedent variableds of the system (60)—(61). Actually, we will

15



check whether or not, egs. (80) will transform the aforementioned system
to a system of ordinary differential equations. Indeed, inserting eqs. (64)
into PDEs (60)—(61) we obtain

Pz oz 08 Or ._s 0%z %z
2 Rt Tl o Rl SRS 5. S
O gxz + 20z x ~Clax) axr e = (81)
P a0 %0 08, 0z 9 02 ox 0%z
k(X)6X+k(X)5k—§+C‘ Gat(é)X) + 2C10 X 5X51 =, (82)
After that, we carry out the following calculations
oz 32 o or
%z 0%z §
and a0 %0 06
=i OV -1 %Y _ iy
SE=VX, S =X, =X (84)

Thus, in our last step we have just to insert eqs. (83)-(84) into egs. (81)-
(82) to obtain the following system of ordinary differential equations

C12%u" 4 2C1w'd — Cou'u” = 0, (85)
E (X)W + k(z)v" — Cro*u + 2C1v%u" = 0. (86)
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A Appendix: The Derivation of Egs. (17)—(20)

We give here the technical details for the derivation of egs.(17)—(20). Sum-
marizing the information about isovector field at hand, namely equations
(16), we can write

W2 (t) = byt? + bat + bs,
QUX,t,z) = (it + ag)z + B(X, 1),
O2(X,t,6) = [MX) + ()6 + (X, 1), (87)

where by, b, b3 and as are arbitrary constants, 3, ~, p are arbitrary functions
and

AX) = % / K(X)dX

If we differentiate now egs. (10) and (11) with respect to X and #
respectively and after that subtract them from each other we can obtain by
virtue of eqs. (16), for Fpg # 0

"

W =0=3w =X +e. (88)

Hence, up to this point we have proved the form of the first two components
of the isovector field (17).

Differentiating eq. (14) with respect to 6, multiplying by ¢, and then
differentiating (15) with respect to p and finally subtracting from each other
we take

r . 1 Qz Bﬂl
[[(6 /)t + 82 — 20 + 2%? —~ za—m]e ~ Q2] 0Fppp = 0.
Thus for Fp,p, # 0, we obtain
. ; 2 1
(K /) + 302 — 2 + ‘% — 2%% =0, (89)

which is the required eq. (20).
In what follows we elaborate carefully eq. (89); first we differentiate with
respect to t and easily obtain

p(t) = —4bit + pa, (90)

where pq is an arbitrary constant. Next differentiating with respect to X,

we obtain )
(k /) =c. (91)
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Therefore, eq. (19) has derived. Moreover, with the aid of eq. (16) it gives

8%Q?

X080 (92)

Inserting now eq. (89) into eq. (12) it becomes comparable to eq. (10).
After proper differentiation this comparison results :

3292
—z =0 (93)

Coming back to egs. (10) and (11), differentiating them twice with respect
to ¢, we can obtain

it a0t

axee =% B =0 (84)
In the same line of argument, with the aid of eq. (89) we can make egs.

(10) and (15) to be comparable with each other. Thus for Fy, # 0 we obtain

—85-—9 =0= 0%(t,0) = (—4bit + )0 (95)

The last step was obtained by virtue of eq. (92). After the last relation, we
come back to egs. (10) and (11) once more, differentiate with respect to X
and ¢ respectively to obtain

2! Q!
axz =" m
With egs. (94) and (96) at hand the function 3 takes the form

Il (96)

B(X,t) = p1tX + Bot + B3 X + s, (97)

where 81, 52,83 and 34 are arbitrary constants. After egs. (95) and (97)
the form of the remaining components of the isovector field (17) has been
proved too.

Last, we apply the same way of elaboration to eqs. (13) and (15); that is
we differentiate with respect to 6 the former and with respect to ¢ the latter
and substitute each other. the result of this manipulation is

0Fpg — Fy = 0= F(p,0) = f(p)6* + ¢(p), (98)

where f and ¢ are arbitrary functions. Hence, eq. (18) has derived, too.
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An Advisory System for Statistical Analysis

By I. Tsomokos-and K. X. Karakostas
Department of Mathematics
Univ. of loannina - HELLAS

ABSTRACT

In this paper an advisory system for statistical analysis (ASSA) is presented for use by non-
statisticians. The objective is to encourage office-workers, who are non-statisticians to make, as far as
possible, a correct statistical analysis with an efficient and effective way, by exploiting some attributes
of their data. ASSA is data -driven and navigates the user through QUESTIONS and ANSWERS to the
selection of the statistical methodology (statistical technique or model) which is appropriate for the
data under hand.
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1. INTRODUCTION

It is well known that statistical methodologies are used by a lot of scientists in almost every
scientific field. Therefore today the demand is increasing for systems that can implement these
methodologies. More specifically the need is for systems that can give advise about the appropriate
statistical methodology on formatted data.

This increasing demand has been caused, firstly by the rapid development of personal computer (pc)
and workstation (ws) technology in the recent years and the continuously declining cost of them, and
secondly by the large number of statistical packages available. The proliferation of pc and ws- based
office systems have expanded the production of statistical analysis in a wide range of activities (i. e.
civil works, social sciences, agriculture, education e.t.c.)

The rapid development of pc's has had as a consequence the implementation of more advanced
statistical techniques with a lot of details in the statistical packages. This fact confuses the non-
statisticians and prohibit them to select the right statistical methodology.

The ASSA system aims exactly at this point. It gives correct advice for the appropriate statistical
methodology since its knowledge base is restricted by the built-in theoretical limits of existing
statistical theory. This system is efficient and effective for the user.

The benefits of this system are decision quality, increasing production, time saving, cost reduction
and general improved services.

In the next paragraph we discuss the steps necessary for the statistical analysis whereas in the third
paragraph we give a description of the ASSA system.

2. STEPS FOR THE ANALYSIS

Roughly speaking if someone wants to statistically analyze his data he has to follow the following
steps.

STEP 1. Selection of the statistical methodology
This is the fundamental step in the analysis. A wrong selection of statistical methodology may lead to
wrong conclusions or it may not reveal the complete structure of the data.

STEP 2. Selection of the right statistical software
Having decided about the statistical methodology to be used we have to select a statistical package to
implement it. The selection is crucial because not all packages give the same (maximum) information
to the user. We will illustrate this point with the following example. Suppose that our statistical
methodology, selected in the previous step, is that of regression analysis. It is well known that the
various forms of residuals (e.g. raw, standardized, deleted. e.t.c.) play quite an important role in such
an analysis. So a statistical package which computes only the raw residuals is not satisfactory.

STEP 3. Main analysis
At this step the non-statistician needs some rules to follow in order to complete the analysis. For
example in regression analysis one needs to know what the assumptions are about the error term and
how they can be checked.
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STEP 4. Interpretation of the results
This means not only the final conclusions but also the intermediate ones. The last ones are sometimes
quite crucial because they may lead to a different model.
For example in regression analysis if the user does not interpret correctly the various graphs of the
residuals then he may end up with a wrong model and consequently with wrong conclusions.

The above are shown graphically in figure 1.

O
ANALYSIS OF DATA
Selection of the Selection of the

correct statistical ~ ——» appropriate statistical —» Main analysis

methodology software

u l

0 Interpretation of
the results

Figure 1. The steps necessary for statistically analyzing data

As we pointed out at the very beginning of this paper the user has a large number of statistical
software to choose from. For a comparison between some of them see (va prel avogopad)

In the last few years some of the available statistical packages developed procedures along the lines
of stepl. (e.g SAS, S.P.S.S.). However their work in this area is not satisfactory because they mainly
interpret the results and/or give some kind of a glossary and they do not suggest specific statistical
‘methodology. To the authors knowledge there is no published work in this direction except for the
work by Bill Trochim, which is available through the Internet in the address
(http://trochim.human.cornell.edu/). Our system focuses on the first step although some kind of
progress has been done on the third step too.

An ideal function for an expert statistical system of the kind described in this paper would be for the
user to provide the necessary information in his natural language. The system, after doing a semantic
analysis, recognize the user's needs and acts on the formatted data, then it response with all relevant
information independently of the statistical package used by the user.

Up to now such a system does not exist. We hope that we shall be able to provide such a system in
the near future.
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DISCRIPTION OF THE ASSA

The ASSA, like most diagnostic systems, is data-driven. That means that the user provides some
information- in the form of replies- to questions posed by the ASSA and then he receives the
appropriate advice. All these questions and answers are kept on a logged window. The content in that
window can be saved in a file for later use. For some questions, the user responds by selecting from a
menu. In other cases it is necessary to type in the answer. The user has the option to ask the system to
explain the question so that this becomes more clear. In addition the ASSA has the possibility to
explain various statistical items, which exists in the question posed, in an html form. This can be done
either by giving an appropriate definition or by giving an example.

A kind of such questions and possible answers are given in the following example.

ASSA : How many variables are involved in your analysis?

User : Two (2)

ASSA : Could any one of them be considered as a depended variable?

User : Explain

ASSA : Your interest, at the moment, is focused on two variables of your data. If you are interested in
studying e.g. the effect of the first variable on the second one, then the second variable is considered as
dependent variable. As an example consider two variables e.g. WEIGHT and HEIGHT. If we want to
see the effect of HEIGHT on WEIHGT then WEIGHT is the dependent variable. For more information
you can see about that item on the HELP button.

User: Yes

ASSA : Is that variable quantitative?

User: Yes

ASSA : Is the other variable (call it independent) quantitative too?

User: Yes

ADVISE : The suggested statistical methodology is that of the simple regression model.

The other possibility was the goal-driven approach, which starts with a specific statistical
methodology and tries to validate it. This it is not preferable since there exists great possibility for the
user to pass through a large number of statistical methodologies and this may discourage him. Beside
that it is also time consuming.

The knowledge base of ASSA contains about thirty rules. For example for the simple regression we
have a rule like this:

IF there are two (2) quantitative variables in the analysis
AND one of them can be thought of as a dependent variable
THEN the model is that of the simple regression.

The ASSA system has been prototyped and tested with the shell ESTA

(Expert System shell for Text Animation).
An example using ASSA follows.
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ASSA

An Advisory System
For Statistical Analysis.

How many variables (or factors) are contained
in your data ?

How many frﬁm the 7 variables are involved
in the analysis of your interest ?

The user answers by typing
in the number 7.

The user's answer is here.
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<o

{From the previous 2 variables can you
consider some of them as depentent ?

: ot-k " The user asks for an
' : explanation and gets the
following information window.

Explain question |

Your interest, at the moment, is focused on two variables of your data.
If you are interested in studying e.g. the effect of the first variable on the second one,
hen the second variable is considered as dependent variable.

Let consider two variables e.g. WEIGHT and HEIGHT. If we want to see the effect of
HEIGHT on WEIHGT then WEIGHT is the dependent variable.

For more information and examples, you can see about that item on the HELP.

By pressing the OK button in that window he gets the previous one where he selects the answer
fust_one’ and goes the following window.

' Is the dependent variable quantitative or
qualitative?

The user selects
‘quantitative’




1 Can the rest 1 variables be consider as
quantitative or qualitative or both?

O

quantative

The user selects

'quantitative’ again

...and gets the advice.

The .requesmd analysis is that of Regression. / j

( Linear or not Linear )

( See e.g. Rawlings, O. (1988) Applies Regression Analysis Wadsworth & Books.)

Thank you for using.
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On a class of generalized (k, u1)-contact metric manifolds

By
T. Koufogiorgos and C. Tsichlias *)

Abstract. We classify the 3-dimensional generalized (s, 1)-contact metric
manifolds, which satisfy the condition ||grads|| =const.(3 0). This class of
manifolds is determined by two arbitrary functions of one variable.

1. Introduction. The tangent sphere bundle, of a Riemaniann manifold of
constant sectional curvature admits a contact metric structure (1,£,¢,g) such
that the characteristic vector field £ belongs to the (k, x)-nullity distribution, for
some real numbers k and p. This means that the curvature tensor R satisfies the
condition

(%) R(X,Y)E = w[n(¥)X — n(X)Y] + p[n(Y)hX —n(X)hY]

for any vector fields X and Y, where h denotes, up to a scaling factor, the Lie
derivative of the structure tensor field ¢ in the direction of £. The class of con-
tact metric manifolds which satisfy (+) has been classified in all dimensions, see
[21,[3],[4].

On the other hand, the existence of 3-dimensional contact metric manifolds M
satisfying (*), with &,z non constant smooth functions on M, has been proved
in [7], through the construction of examples. (In [7] it is also proved that for
dimensions greater than 3 such manifolds do no exist). This class of Riemannian
manifolds seems to be particulary large and we call such a manifold a generalized
(k, p)-contact metric manifold (generalized (x, u)-c.m.m., in short).

.In §3 of the present paper we give more examples of generalized (&, p)-c.m.m.,
with the additional property ||gradk| =constant. Moreover, we remark that the
condition ||gradk|| =constant, remains invariant under a D-homothetic deforma-

tion. Hence for any positive real number we can construct at least two such man-
ifolds. The existence of these examples has been our motivation for their study.

Mathematics Subject Classification (1991): 53C25 , 53C15.

*) The second author was supported by a graduate fellowship from the Greek State Scholar-
ships Foundation (I.K.Y.).



Initially, we prove that there exist two types of generalized (k,u)-c.m.m. with
||lgradk|| =constant # 0. Type A, where p = 2(1 — /1 — k) and type B, where
1= 2(14++/1 — &). Next, in §4 we prove that such a manifold is covered by a global
chart, in the coordinates of which we determine the functions x and u. In §5 we
globally construct these manifolds. Finally, introducing a second transformation
in §6, we succeed each member of this class is obtained by the first two examples
given in §3, under such a transformation and a D-homothetic deformation.

All manifolds are assumed to be connected.

2. Preliminaries. In this section we collect some basic facts about contact
metric manifolds. We refer to [1] for more detailed treatment. A differential (2m-+1)
-dimensional manifold M is called a contact metric manifold if it carries a global
differential 1-form 7 such that n A (dn)™ # 0 everywhere. It is known that a
contact manifold admits an almost contact metric structure (1,£, ¢, g), i.e. a global
vector field £, which will be called the characteristic vector field, a (1,1)-tensor
field ¢ and a Riemannian metric g such that n(§) = 1, ¢? = —Id+n®¢§
and g(¢X, ¢Y) = g(X,Y) — n(X)n(Y) for all vector fields X,Y on M. Moreover
(m,€&, ¢, g) can be chosen such that dn(X,Y) = g(X, ¢Y). The manifold M together
with the structure tensors (7,&, ¢, g) is called a contact metric manifold and it is
dencted by M(n,£,,g). Following [1], we define on M the (1,1)-tensor fields &
end I by h = 3(L¢¢) and | = R(.,£)§, where L¢ is the Lie differentiation in the
direction of £ and R the curvature tensor. The tensor fields A, are self adjoint and
satisfy h€ = I = 0, Trh = 0, Tréh = 0, h¢ + ¢h = 0,

(1) Tri=g(Q¢, %),

where () is the Ricci operator. Since h anti-commutes with ¢, if X is an eigenvec-
tor of h corresponding to the eigenvalue A, then ¢X is also an eigenvector of h
corresponding to the eigenvalue —\. If V is the Riemannian connection of g, then
Vg,i) = 0,

(2) Vx§=—¢X — phX (and so V£ =0),

(3) Veh = ¢ — ¢l — ph2.

Particularly, for the 3-dimensional case, the following formulas are valid ([6])
@ w=(t-ne, i<y,

(5) Z(inh)Xi = ¢Qk,

where X;,2=1,2,3, is an arbitrary orthonormal frame.
By a generalized (k, j)-contact metric manifold we mean a 3-dimensional contact
metric manifold such that

(6) R(X,Y)¢=kn(Y)X —n(X)Y]+ pn(Y)RX —n(X)RY], X, YeX(M),



where &, 1 are smooth functions on M, independent of the choice of vector fields
X and Y.

The formulas in the next Lemma are known (see [5], [7]). For the sake of com-
pleteness we will give the outline of their proofs.

Lemma 1. On any generalized (k, g)-c.m.m. the following formulas are valid

Trl

(7) R=(k-1)¢%, Kk=—-<1
(8) €k =0, hgradu = grads.
Moreover, if k # 1 everywhere on M, then
(9) va = —(A + 1)¢X, vquf = (1 —_ A)X,
XA XA

(10) VeX =-EoX, VesX=LxX, Vxx=9226X, Vexox = 2%,
(1) VexX=-326X+(-1g Vxox=-22x 4 (v 1,
(12) [6X]=(1+2-DeX, [oX]=(-1+5)x,

_ 4D, X
(13) [X,¢X]= —WX_F X X + 2¢,

where (£, X, ¢X) is a local orthonormal basis of eigenvectors of h, such that R X =
AX, A=+1-k>0.

Proof. Using (6), we easily get R(€, X)Y = Klg(X, Y)e—n(¥) X]+ulg(hX, Y )e~
n(Y)hX] and so by the definition of Q and (1) we get Q¢ = 2x€ and Trl = 2k.
This and (4) imply (7). Using (6), Q¢ = 2x£ and the well known formula

R(X,Y)Z = ¢(Y, 2)QX — g(X, 2)QY +9(QY, 2)X
~9(QX, 2)Y — 2(¢(¥, 2)X ~ (X, 2)Y)

for Y =27 =¢, we get
(14) Q=al +bn®E&+ ph,

where § is the scalar curvature, @ = (S — 2«) and b = 2-21(65 — 5). Using (6),
#? = —Id+n ® £ and the definition of  we find I = —k@* + ph. This, together
with (3) , (7) and ho+¢h = 0 give V¢h = phe. Differentiating 2 = (k—1)¢2 with
respect to £ and using V¢ = 0 and the last equation we get the first equation of
(8). Differentiating (14) with respect to an orthonormal basis X;,i = 1,2, 3, and
using (2), Trhe¢ = 0, ¢§ = R =0, Q€ = 2x€ and (5) we find

Z(in Q)X; = grada + (£b)€ + hgrady.



Comparing this with the well known formula },(Vx,Q)X; = 3gradS, we get
hgradp = gradx. Relations (9) are immediate consequences of (2). The first two
relations of (10) are obtained from (6), for Y = £, and the definition of the curva-
ture tensor. Using (5) we get the last two relations of (10). Relations (11) follow
from (9) and (10), while (12) and (13) are immediate consequences of (9)-(11). We
denote that the existence of the local basis (£, X,$X) is proved in [7].

3. Examples. 1. (Type A). We consider the 3-dimensional manifold M- =
{(z,y,2)eR®/z < 1}, where (z,y, 2) are the standard coordinates in R®. The 1-
form n = dz + 2ydz defines a contact structure on M with characteristic vector
field £ = ;—z. Let g, ¢ be the Riemannian metric and the (1,1)-tensor field given by

1 0 —a 0 —a ab
g=1| 0 1 —b , ¢=| 0 —b 1+0b°
—a —b 14+a2+8° 0 -1 b

with respect to the basis ;9‘9;, %, %, where ¢ = —2y and b = 2z/1 — 2+ Z'(lyl_zi-
The tensor fields (7,£, ¢, g) define a generalized (k, p)-contact metric manifold
with K = z (and so ||gradk|| = 1) and p=2(1 — /1 —2).

2. (Type B). On the manifold M of the previous example we define the tensor
fields (1,€, ¢, g) by = dz — 2ydz, £ = £,

1 0 a 0 —a ab
g=l 0 1 =3 , o= 0 b —-1-8% |.
a —b l+a?2+0d? 0 1 —b

Then M(n,&, ¢,9) is a generalized (k, p)-contact metric manifold with £ = 2 and
p=2(14++v1-2).

3. Let M(n,&, ¢,9) be a contact metric manifold. By a D,-homothetic deforma-
tion (see [8],[2]) we mean a change of structure tensors of the form

_ = 1 — =
f=an, £=-§ é=¢, g=eg+ala—1)nemn,

where a is a positive number.The curvature tensor R and the tensor h transform in
the following manner [2]: A = 1k and aR(X,Y)€ = R(X,Y)E+ (a — 1)2[p(Y) X —
NX)Y] — (- DI(Vx DY — (Vy$)X +n(X)(¥ +K¥) - n(¥)(X + X)) for any
X,Y. Additionally, it is well known [9, pp 446,447], that any 3-dimensional contact
metric manifold satisfies (Vx¢)Y = g(X +hX,Y)¢ —n(Y)(X +hX). Using these
we have that if M (7, £, ¢, g) is a generalized (k, p)-c.m.m., then M(7,£, ¢, §) is also
a generalized (R, i)-c.m.m. with § = -'“—T-ff:"—l and i = %a;ll ([7]). Therefore, if
M(n,€,,9) satisfies ||grads], = d (const.), then M(7, , 3.5) satisfies [|gradill; =
da~%. It follows from the fact that, if (§,X,¢X) is an orthonormal basis with
respect to g, then (1¢, %X : :};¢X ) is an orthonormal basis with respect to 3.
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As a result of the above and examples 1,2, we have the following Proposition.

Proposition 2. For any positive number, there exist at least two generalized
(K, t)-c.m.m. with ||gradk|| =constant 5 0.

Remark 1. (i) Using the fact that, any generalized (k, x)-c.m.m. with llgradx||, =
d # 0 (const.) is D,-deformed in another generalized (R, B)-c.m.m. with
llgradr||; = da~%, for any positive a and choosing @ = d#, it is enough to study
those generalized (%, i£)-c.m.m. with ||gradk|| = 1.
(ii) If d = 0, then & is constant. Therefore, if £ = 1, then M is a Sasakian manifold
[2], while for & 5 1, u =constant [7].
(i) A D,-homothetic deformation preserves the type of a generalized (K, p)-
contact metric manifold with [|grads|| =const.

4. Main results. From now on, we suppose that M (m,€,9,9) is a generalized
(%, p)-contact metric manifold with ||gradk|| = 1. Because hgrady = grads, we
have A 7 0 and so k # 1 everywhere on M as it follows from (7). We denote by
(§,X,9X) a local orthonormal frame of eigenvectors of h such that X = A\X ,
A = +v1—£ > 0. The next Lemma inform us that there exist 2-types of such
manifolds.

Lemma 3. Let M be a generalized (x,u)-c.m.m. with ||grads|| = 1. Then
p=2(1—A) or p=2(1+ A). In the first case (type A), the following are valid,
Xk=1,XKk=0,[,X] = 20X, [£,6X] =0 and [X,¢pX] = — L ¢X + 2¢.

In the second case (type B), the following are valid,
$XKk=1Xk=0,[¢,X]=0,[¢,$X] = 22X and [X,$X]= gk X +2¢.

Proof. Using £k = 0 and ||gradx|| = 1 we have

(15) grads = (Xr)X + (X k)pX
and
(16) (XK)? + (¢XK)2 =1.

Differentiating (16) with respect to £ and using (8) and (12) we get successively

(EXK)(XK) + ((6XK)(0XK) =0
(& X&) (X k) + ([, 0X]r)(¢XK) =0
MXk)(¢XK) =0
and since A # 0,
(17) (Xr)(¢Xk) =0.

We consider the open sets

A={PeM/(XK)(P) #0} and B={PeM/($Xk)(P)# 0}.



Because ||gradk|| # 0, we have ANB = ) and AU B = M. Moreover, by the
connectness of M we get A= M and B =0 or B= M and A = (). We distinguish
two cases.

Case 1. Let A= M. Then, (17) gives X« = 0. Using this, Xx # 0, £k = 0, then
the second of (12) gives p = 2(1— ) and [£, $X] = 0. Moreover, from (16) we have
Xk = =£1. Without loss of generality we may assume that X« = 1, differently we
choose the basis (£, —X,—¢X). Differentiating \?> = 1 — x and using X« = 1 and
¢Xk =0 we get X\ = —5- and pX )\ = 0. Substituting these in (12) and (13) we
have [£, X] = 206X and [X, $X]| = —LypX + 2¢.

Case 2. Let B = M. Then ¢Xk # 0 and Xk = 0. Working as in case 1 we finally
get p = 2(1+ ), Xk = 1, [§,¢6X] = 2)X and [X,¢X] = 77X + 2£. This
completes the proof of the Lemma.

Remark 2. In the case of type A (1 = 2(1— X)), we have X = grads and in the
case of type B (1 = 2(1+ X)), we have X = —¢gradx, as they follow from (15).
Because the function & is globally defined on M, we conclude that the orthonormal
frame (£, X, ¢X) of eingenvectors of & is globally defined on M.

Remark 2, leads us to the following Proposition.

Proposition 4. Any generalized (%, 1)-c.m.m. with ||graedk|| =const.# 0 is par-
allelizable.

In the next Lemma, we construct a suitable chart, whose domain is the whole
of the manifold.

Lemma 5. Let M be a generalized (k, p)-c.m.m. with ||gradk|| = 1. Then, there
exists a chart (z,¥, z) whose domain covers M. Moreover,x = z, z < 1, everywhere
on M.

Proof. According to Lemma 3 we distinguish two cases.
Case 1. Let pp = 2(1 — X). Because [, ¢X] = 0, the distribution which is obtained
by ¢X and £ is integrable. So for any point PeM there exists a chart {V, (Z,7,2)}
at P, such that
&= %,(;SX: % and X—a;—_+b§y+c63

where a,b,c, (¢ # 0), are smooth functions on V Now, we consider on V the
linearly independent vector fields £,¢X, W = c= 34 An easy calculation implies
82 = 0,4 = 0 and so [¢X, W] = [(,W] = [£,4X] = 0. This means that there
exists a chart {U, (z,y,2')} at P such that £ = £ ,¢X g;,w =4Z.00U
we have £ = aaz = I,qbX ay = -3? and X = aaz +b + 6z,, as 11: follows
By £ = ¢Xk = 0 and
% = £k =0 we get %‘7 =1 and so k¥ = 2’ + d, where d is an integration constant.
The substitution z = 2’ + d, locally completes the proof of the Lemma in case 1.

fromW:%—-caizX—a-gg—ba Using it, XK,—].



Case 2. Let p = 2(1+ )). Working, as in case 1, for the integrable distribution,
which is obtained by £ and X ([¢,X] = 0), we finally find that there exists a
chart (z,9,2) at PeM on whose domain U, k = 2,£ = g-,X 3— and ¢X =

a’ 8.7: +b' 5 = Thegk az= where o', are smooth functions on M. Since A = /I — &, it is
obvious that z<lin both cases.

Now, we will prove that domain U of the above chart can be extended such
as to be the whole of M. We will prove case 1, as far as the proof of case 2 is
analogous. We suppose that (A, %) is a chart at P such that the open set A is the
largest possible extension of U. Let A # M. Then, for any gedA, there exists ga.s
we have proved) a chart (V, 'q’)(a: ¥,Z)) at g, such that k=Zt=%,0X =
On ANV wehave 2=2,£ = 5‘95:— and ¢X = . From these, we get
(Z,9,2) = (z+ c1,¥ + 2, 2), Where ¢1,Co are mtegrat:on constants We consider
the smooth function w on AUV, such that w = % on A and w = — (€1, ¢2,0)
on V. Then, (AU V,w) defines a new chart of M at P, whose domaln AUV D A.
By this contradiction, we conclude that A = M. This completes the proof of the
Lemma.

An immediate and expected consequence of the above result is the following
Corollary.

Corollary 6. There are no compact, generalized (%, p)-contact metric manifolds
with ||gradk|| = const. # 0.

Now, we will state and prove our main result.

Theorem 7. Let M(,&, ¢, g) be a 3-dimensional generalized (, 11)-contact met-
ric manifold with [|gradx|| = 1. Then M is covered by a chart (z,y,2),z < 1,
such that Kk = 2z and p = 2(1 — /1—2) or g = 2(1 + +/T = 2). In the first case
(£ =2(1 — /1 - 2)), the following are valid,

o o] o 6 o)
= — = — = aqg—
£ 3z’ X and X = a, -l— b— 8
In the second case (u = 2(1 + +/1 — 2)), the following are valid,
0 d , 0 8 &
= — = — X = b
& 37’ X = and ¢ a + By Fi a2’

where a(z, y,z) =2y + f(2), o'(z,9,2) =2y +h(2) b(z,y,2) =¥ (z,y,2) =
22v/1 — 2+ g5y +7(2) and f,r, h are smooth functions of z.

Proof. Because of Lemma 5 (see, also its proof) we just have to calculate func-
tions a,b,a’,d’.
Let y2 = 2(1 —+/1 — z). Then
da O ab o da 8 ab 8

€, X]= ST %23y and [X,¢X]= "Bz Gyoy



Combining these, with [{, X] = 2X¢X = 2A£ and [X,¢X] = —z56X + 26 =
-;—igg% -+ 23‘9; (see, Lemma 3), we get

da b da, ab 1

a-— s a_z\, 6—y'—'-2 and b—y--—-m
It follows from this system that, @ = —2y+ f(z) and b = 2z/T — 2+ 4—(19_7) +r(2),
where f(2),r(2) are integration functions. :
Now, let p = 2(1 4+ +/1 — z). We have

da' &8 O o 8ad 8 O 8
——+——— and [X,¢X]= — — 4+ — —.

= my M BXl=g 5
Combining these, with [£,0X] = 20X = 2)\3% and [X,¢X] = gz X +2 =
4_%.'53% +23% we get

da’ ob' da’ ov' 1

oz Bz " By and B = Do

and so a'(z,y,2) = 2y + h(2) and b'(z,y,2) = 2z/T— 2 + 4—(1_Lz) + 7(z), where
h(z),p(z) are integration functions. This competes the proof of the Theorem.

Remark 3. The functions a, b,a’,d’ of Theorem 7 determine the manifold com-
pletely, as we will see in the next paragraph. There, using the conclusion of Lemma
5, we will construct in R® all the generalized (k, x)-c.m.m. with [|gradk|| = 1.

5. Construction. Let M = {(z,y,2)eR®/2 < 1} and f,r : M — R be arbitrary
functions of 2. We consider the linearly independent vector fields

8 0. .0 8 98
oz’ 2T %% 8y 82’ es_ay’

where a(z,y, 2) = =2y + f(2),b(z,y,2) = 221 — 2+ iy T 7(2). Let g be the
Riemannian metric defined by g(e;,e;) = 8;;,(4,7 = 1,2,3), V the Riemannian
connection and R the curvature tensor of g. Putting A = /1 — 2, we easily get
le1, €3] = 0, [e1, e2] = 2)e, [ea, €3] = —3res +2e;. Moreover, we define the 1-form
7 and the (1,1)-tensor field ¢ by 7(.) = g(.,e1) and ¢e; = 0, des = e3, pes = —es.
Because 7 A dn # 0 everywhere on M, 7 is a contact form. Using the linearity
of ¢, dn and g we find n(e;) = 1,¢°Z = —Z + n(2)e1,dn(Z, W) = g(Z, ¢W)
and ¢(6Z, ¢W) = g(Z, W) — 1(Z)n(W) for any Z,WeX(M). Hence M(1,e1,6,9)
defines a contact metric structure on M. Putting £ = e;, X = e5,¢X = e3 and
using the well known formula

e =

29(VyZ,W)=Yg(Z, W)+ Zg(W,Y) — Wy(Y, Z)
—9(Y,[2,W]) — 9(Z,[Y, W]) + g(W, [V, Z)),



we find the formulas (9)-(13). Moreover, for the tensor field h we get h§ = 0,hX =
AX,h¢X = —A¢X. Using the above relations and the definition of the curvature
tensor, we finally get that M(n,£, ¢, g) is a generalized (k, u)-c.m.m. (of type A)
withk =zand p=2(1 —/1-2).

In order to construct an arbitrary generalized (k,u)-c.m.m. with ||grads| = 1
of type B, we work analogously on the same manifold M, considering the vector

fields
2 es = g e a—(2-+ba 0
83'51 2—“ay 3 = 6:(] a

where o' = 2y + f(2), ' = 28I~z + g7%55 + 7(2). The tensor fields g,7, ¢
are defined by g(e;,e;) = 6i;,(¢,5 = 1,2,3), n(.) = g(.,e1), e1 = 0, ez = e3 and
des = —ez. Putting { = e;, X = ez and ¢X = e3 we finally find that M(n,&, ¢, g)
is a generalized (k,u)-c.m.m. (of type B), with k = z and g = 2(1 + 1 — 2).

€] =

Remark 4. The examples 1 and 2 of §3 correspond in the special case f =
0,7=0.

In §3 we have seen that a D,-homothetic deformation tranforms a general-
ized (k,u)-c.m.m. with ||gradk|| = 1 to another generalized (R, [)-c.m.m. with
|lgradi| = d # 1(const.). In the next paragraph we will introduce a second
transformation, which transforms a generalized (k,u)-c.m.m. M(n,§,6,g) with
|lgradk]| = 1 to another generalized (k, p)-c.m.m. M(7, £, ¢, §) with the same &, p,
llgradk||; = 1 and of the same type.

6. Another transformation. Let M (7, £, ¢, g) be a generalized (k, 1)-c.m.m.
with ||gradk|| = 1, and f,r smooth functions on M such that £f = &r = 0 and
(¢gradk) f = (¢pgradk)r = 0. We consider the vector fields

£=¢ X =grade+ f& +r(pgrads), Y = dgrads
and we define the tensor fields g, 7, ¢ as follows,
96,6 =9(X,X) =3(Y,¥) = 1,56, X) = 9(£.¥) = 3(X,Y) =0
ﬁ(~):§(-,£), ¢£=Oa¢’X:Y1¢Y:_X
Then M(7,£,$,7) is a generalized (k, p)-c.m.m. with ||gradk||; = 1 (with the same
Ky i)

To prove it, we distinguish two cases: g = 2(1—\) and u = 2(1+)). We will prove
the first case, because the proof of the second case is similar. Let g = 2(1—2). Then,
as we have seen in Lemma 3, {k = 0, (gradk)k = 1, (¢grads)s = 0. Therefore,
there exists a global coordmate system (z,¥, 2), (see, Theorem 7 and 1ts proof)
such that , kK = 2,§ = & 8. ogradk = —‘9— and gradk = a.aI +b3y + az’ where
a = =2y +h(2),b = 22v1— 2+ g5t —i— v(z) and h,v smooth functions of z.

Then X = (—2y+ F(2)) £ + (2avVI—2+ it + G(2)) & + £ and ¥ = ey



where F' = f+h and G = r +v. According to the construction of §5, M(7,£, ¢, )
is also a generalized (k, u)-c.m.m. with K = z and p = 2(1 — /1 —2).

Remark 5. Any generalized (k, p)-c.m.m. with ||gradk|| =const. # O can be
obtained by examples 1 and 2 of §3, under the above transformation and a D,-
homothetic deformation.
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